5,834 research outputs found

    Meteoroid capture cell construction

    Get PDF
    A thin membrane covering the open side of a meteoroid capture cell causes an impacting meteoroid to disintegrate as it penetrates the membrane. The capture cell then contains and holds the meteoroid particles for later analysis

    Learning Geometric Concepts with Nasty Noise

    Full text link
    We study the efficient learnability of geometric concept classes - specifically, low-degree polynomial threshold functions (PTFs) and intersections of halfspaces - when a fraction of the data is adversarially corrupted. We give the first polynomial-time PAC learning algorithms for these concept classes with dimension-independent error guarantees in the presence of nasty noise under the Gaussian distribution. In the nasty noise model, an omniscient adversary can arbitrarily corrupt a small fraction of both the unlabeled data points and their labels. This model generalizes well-studied noise models, including the malicious noise model and the agnostic (adversarial label noise) model. Prior to our work, the only concept class for which efficient malicious learning algorithms were known was the class of origin-centered halfspaces. Specifically, our robust learning algorithm for low-degree PTFs succeeds under a number of tame distributions -- including the Gaussian distribution and, more generally, any log-concave distribution with (approximately) known low-degree moments. For LTFs under the Gaussian distribution, we give a polynomial-time algorithm that achieves error O(ϵ)O(\epsilon), where ϵ\epsilon is the noise rate. At the core of our PAC learning results is an efficient algorithm to approximate the low-degree Chow-parameters of any bounded function in the presence of nasty noise. To achieve this, we employ an iterative spectral method for outlier detection and removal, inspired by recent work in robust unsupervised learning. Our aforementioned algorithm succeeds for a range of distributions satisfying mild concentration bounds and moment assumptions. The correctness of our robust learning algorithm for intersections of halfspaces makes essential use of a novel robust inverse independence lemma that may be of broader interest

    Pancharatnam-Berry phase in condensate of indirect excitons

    Full text link
    We report on the observation of the Pancharatnam-Berry phase in a condensate of indirect excitons (IXs) in a GaAs coupled quantum well structure. The Pancharatnam-Berry phase leads to phase shifts of interference fringes in IX interference patterns. Correlations are found between the phase shifts, polarization pattern of IX emission, and onset of IX spontaneous coherence. The Pancharatnam-Berry phase is acquired due to coherent spin precession in IX condensate. The effect of the Pancharatnam-Berry phase on the IX phase pattern is described in terms of an associated momentum.Comment: 6 pages, 5 figures + 2 pages supplemental material, 3 supplemental figure

    Collection of indirect excitons in a diamond-shaped electrostatic trap

    Full text link
    We report on the principle and realization of a new trap for excitons -- the diamond electrostatic trap -- which uses a single electrode to create a confining potential for excitons. We also create elevated diamond traps which permit evaporative cooling of the exciton gas. We observe collection of excitons towards the trap center with increasing exciton density. This effect is due to screening of disorder in the trap by the excitons. As a result, the diamond trap behaves as a smooth parabolic potential which realizes a cold and dense exciton gas at the trap center.Comment: 4 Pages, 5 figure

    Transport of Indirect Excitons in a Potential Energy Gradient

    Get PDF
    We realized a potential energy gradient - a ramp - for indirect excitons using a shaped electrode at constant voltage. We studied transport of indirect excitons along the ramp and observed that the exciton transport distance increases with increasing density and temperature.Comment: 4 pages, 3 figure

    Electrostatic Conveyer for Excitons

    Full text link
    We report on the study of indirect excitons in moving lattices - conveyers created by a set of AC voltages applied to the electrodes on the sample surface. The wavelength of this moving lattice is set by the electrode periodicity, the amplitude is controlled by the applied voltage, and the velocity is controlled by the AC frequency. We observed the dynamical localization-delocalization transition for excitons in the conveyers and measured its dependence on the exciton density and conveyer amplitude and velocity. We considered a model for exciton transport via conveyers. The theoretical simulations are in agreement with the experimental data.Comment: 4 pages, 4 figures + supplemental material including two video
    corecore