92 research outputs found

    Dynamic Scaling and Two-Dimensional High-Tc Superconductors

    Full text link
    There has been ongoing debate over the critical behavior of two-dimensional superconductors; in particular for high Tc superconductors. The conventional view is that a Kosterlitz-Thouless-Berezinskii transition occurs as long as finite size effects do not obscure the transition. However, there have been recent suggestions that a different transition actually occurs which incorporates aspects of both the dynamic scaling theory of Fisher, Fisher, and Huse and the Kosterlitz-Thouless-Berezinskii transition. Of general interest is that this modified transition apparently has a universal dynamic critical exponent. Some have countered that this apparent universal behavior is rooted in a newly proposed finite-size scaling theory; one that also incorporates scaling and conventional two-dimensional theory. To investigate these issues we study DC voltage versus current data of a 12 angstrom thick YBCO film. We find that the newly proposed scaling theories have intrinsic flexibility that is relevant to the analysis of the experiments. In particular, the data scale according to the modified transition for arbitrarily defined critical temperatures between 0 K and 19.5 K, and the temperature range of a successful scaling collapse is related directly to the sensitivity of the measurement. This implies that the apparent universal exponent is due to the intrinsic flexibility rather than some real physical property. To address this intrinsic flexibility, we propose a criterion which would give conclusive evidence for phase transitions in two-dimensional superconductors. We conclude by reviewing results to see if our criterion is satisfied.Comment: 14 page

    Observation and calibration strategies for large-scale multi-beam velocity-resolved mapping of the [CII] emission in the Orion molecular cloud

    Get PDF
    24 pags., 32 figs., 3 tabs.Context. The [CII] 158 μm far-infrared fine-structure line is one of the dominant cooling lines of the star-forming interstellar medium. Hence [CII] emission originates in and thus can be used to trace a range of ISM processes. Velocity-resolved large-scale mapping of [CII] in star-forming regions provides a unique perspective of the kinematics of these regions and their interactions with the exciting source of radiation. Aims. We explore the scientific applications of large-scale mapping of velocity-resolved [CII] observations. With the [CII] observations, we investigate the effect of stellar feedback on the ISM. We present the details of observation, calibration, and data reduction using a heterodyne array receiver mounted on an airborne observatory. Methods. A 1.15 square degree velocity-resolved map of the Orion molecular cloud centred on the bar region was observed using the German REceiver for Astronomy at Terahertz Frequencies (upGREAT) heterodyne receiver flying on board the Stratospheric Observatory for Infrared Astronomy. The data were acquired using the 14 pixels of the German REceiver for Astronomy at Terahertz Frequencies that were observed in an on-the-fly mapping mode. 2.4 million spectra were taken in total. These spectra were gridded into a three-dimensional cube with a spatial resolution of 14.1 arcseconds and a spectral resolution of 0.3 km s-1. Results. A square-degree [CII] map with a spectral resolution of 0.3 km s-1 is presented. The scientific potential of this data is summarized with discussion of mechanical and radiative stellar feedback, filament tracing using [CII], [CII] opacity effects, [CII] and carbon recombination lines, and [CII] interaction with the large molecular cloud. The data quality and calibration is discussed in detail, and new techniques are presented to mitigate the effects of unavoidable instrument deficiencies (e.g. baseline stability) and thus to improve the data quality. A comparison with a smaller [CII] map taken with the Herschel/Heterodyne Instrument for the Far-Infrared spectrometer is presented. Conclusions. Large-scale [CII] mapping provides new insight into the kinematics of the ISM. The interaction between massive stars and the ISM is probed through [CII] observations. Spectrally resolving the [CII] emission is necessary to probe the microphysics induced by the feedback of massive stars. We show that certain heterodyne instrument data quality issues can be resolved using a spline-based technique, and better data correction routines allow for more efficient observing strategies.This work is based on observations made with the NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA is jointly operated by the Universities Space Research Association, Inc.(USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901 to the University of Stuttgart. This work is carried out within the Collaborative Research Centre 956, subproject [A4], funded by the Deutsche Forschungsgemeinschaft (DFG) – project ID 184018867. We thank the Spanish MICIU for funding support under grant AYA2017-85111-P

    Velocity-force characteristics of an interface driven through a periodic potential

    Full text link
    We study the creep dynamics of a two-dimensional interface driven through a periodic potential using dynamical renormalization group methods. We find that the nature of weak-drive transport depends qualitatively on whether the temperature TT is above or below the equilibrium roughening transition temperature TcT_c. Above TcT_c, the velocity-force characteristics is Ohmic, with linear mobility exhibiting a jump discontinuity across the transition. For TTcT \le T_c, the transport is highly nonlinear, exhibiting an interesting crossover in temperature and weak external force FF. For intermediate drive, F>FF>F_*, we find near TcT_c^{-} a power-law velocity-force characteristics v(F)Fσv(F)\sim F^\sigma, with σ1t~\sigma-1\propto \tilde{t}, and well-below TcT_c, v(F)e(F/F)2t~v(F)\sim e^{-(F_*/F)^{2\tilde{t}}}, with t~=(1T/Tc)\tilde{t}=(1-T/T_c). In the limit of vanishing drive (FFF\ll F_*) the velocity-force characteristics crosses over to v(F)e(F0/F)v(F)\sim e^{-(F_0/F)}, and is controlled by soliton nucleation.Comment: 18 pages, submitted to Phys. Rev.

    Nonlinear wave transmission and pressure on the fixed truncated breakwater using NURBS numerical wave tank

    Full text link
    Fully nonlinear wave interaction with a fixed breakwater is investigated in a numerical wave tank (NWT). The potential theory and high-order boundary element method are used to solve the boundary value problem. Time domain simulation by a mixed Eulerian-Lagrangian (MEL) formulation and high-order boundary integral method based on non uniform rational B-spline (NURBS) formulation is employed to solve the equations. At each time step, Laplace equation is solved in Eulerian frame and fully non-linear free-surface conditions are updated in Lagrangian manner through material node approach and fourth order Runge-Kutta time integration scheme. Incident wave is fed by specifying the normal flux of appropriate wave potential on the fixed inflow boundary. To ensure the open water condition and to reduce the reflected wave energy into the computational domain, two damping zones are provided on both ends of the numerical wave tank. The convergence and stability of the presented numerical procedure are examined and compared with the analytical solutions. Wave reflection and transmission of nonlinear waves with different steepness are investigated. Also, the calculation of wave load on the breakwater is evaluated by first and second order time derivatives of the potential

    Triggering Threshold Spacecraft Charging with Changes in Electron Emission from Materials

    Get PDF
    Modest changes in spacecraft charging conditions can lead to abrupt changes in the spacecraft equilibrium, from small positive potentials to large negative potentials relative to the space plasma; this phenomenon is referred to as threshold charging. It is well known that temporal changes of the space plasma environment (electron plasma temperature or density) can cause threshold charging. Threshold charging can also result from by temporal changes in the juxtaposition of the spacecraft to the environment, including spacecraft orbit, orientation, and geometry. This study focuses on the effects of possible changes in electron emission properties of representative spacecraft materials. It is found that for electron-induced emission, the possible threshold scenarios are very rich, since this type of electron emission can cause either positive or negative charging. Alternately, modification of photon- or ion-induced electron emission is found to induce threshold charging only in certain favorable cases. Changes of emission properties discussed include modifications due to: contamination, degradation and roughening of surfaces and layered materials; biasing and charge accumulation; bandstructure occupation and density of states caused by heat, optical or particle radiation; optical reflectivity and absorptivity; and inaccuracies and errors in measurements and parameterization of materials properties. An established method is used here to quantitatively gauge the relative extent to which these various changes in electron emission alter a spacecraft’s charging behavior and possibly lead to threshold charging. The absolute charging behavior of a hypothetical flat, two-dimensional satellite panel of a single material (either polycrystalline conductor Au or the polymeric polyimide Kapton™ H) is modeled as it undergoes modification and concomitant changes in spacecraft charging in three representative geosynchronous orbit environments, from full sunlight to full shade (eclipse) are considered

    An empirical assessment of generational differences in basic human values

    No full text
    This study assessed generational differences in human values as measured by the Schwartz Value Survey. It was proposed that the two most recent generations, Mulennials and Generation Xers, would value Self-enhancement and Openness to Change more than the two older generations, Baby Boomers and Matures, while the two older generations would value Self-transcendence and Conservation more. The hypotheses were tested with a combined sample of Canadian knowledge workers and undergraduate business students (N= 1,194). Two hypotheses were largely supported, although an unexpectedly large difference was observed between Millennials and Generation Xers with respect to Openness to Change and Self-enhancement. The findings suggest that generation is a useful variable in examining differences in social values

    Coping with overload and stress: Men and women in dual-earner families

    No full text
    This study tested gender differences in a model positing relationships between work and family demands, overload, 4 coping mechanisms, and stress. The coping mechanisms were hypothesized to moderate the relationship between overload and stress. The sample consisted of 1,404 men and 1,623 women in dual-earner families. Respondents relied on 2 coping strategies: scaling back and restructuring family roles. Men were more likely than women to respond to overload by scaling back and less likely to respond by work-role restructuring. Coping by family-role restructuring moderated the relationship between role overload and stress for both groups; however, the gender difference was not significant. Coping by work-role restructuring moderated the relationship between overload and stress only for men. Copyrigh

    A comparison of the values and commitment of private sector, public sector, and parapublic sector employees

    No full text
    This study investigated differences in general values, work values and organizational commitment among 549 private sector, public sector, and parapublic sector knowledge workers. No differences in general values were observed across sectors, although five significant work value differences were revealed: parapublic employees value work that contributes to society more than public servants, who value it more than private sector employees; parapublic employees value opportunities for advancement less than both public and private sector employees; public servants value intellectually stimulating and challenging work more than parapublic employees; and private sector employees value prestigious work more than public servants. Private sector employees displayed greater organizational commitment than the employees in the other two sectors. Overall, the findings suggest only limited value differences among employees of the various sectors. The finding of some work value differences between employees in the public and parapublic sectors suggests that these two groups merit separate consideration in comparative studies such as this one
    corecore