82 research outputs found
Electrical standing waves in the HIFI HEB mixer amplifier chain
The Heterodyne Instrument for the Far-Infrared (HIFI) is one of three instruments to be launched aboard the
Herschel Space Observatory (HSO) in 2009. HIFI will provide unprecedented spectral sensitivity and resolution
between 490–1250 GHz and 1410–1910 GHz. In this paper, we report on the analysis of electrical standing waves
that are present between the hot electron bolometer (HEB) heterodyne mixing element and the first low noise
amplifier in the HIFI instrument. We show that the standing wave shape is not a standard sinusoid and difficult
to remove from the resulting spectrum using standard fitting methods. We present a method to remove the
standing waves based on data taken during the HIFI instrument level test, and anticipate the use of a similar
calibration procedure in actual flight. Using the standing wave profile we obtain direct evidence of the complex
IF output impedance of the HEB mixer
An overview of the planned CCAT software system
CCAT will be a 25m diameter sub-millimeter telescope capable of operating in
the 0.2 to 2.1mm wavelength range. It will be located at an altitude of 5600m
on Cerro Chajnantor in northern Chile near the ALMA site. The anticipated first
generation instruments include large format (60,000 pixel) kinetic inductance
detector (KID) cameras, a large format heterodyne array and a direct detection
multi-object spectrometer. The paper describes the architecture of the CCAT
software and the development strategy.Comment: 17 pages, 6 figures, to appear in Software and Cyberinfrastructure
for Astronomy III, Chiozzi & Radziwill (eds), Proc. SPIE 9152, paper ID
9152-10
Electrical standing waves in the HIFI HEB mixer amplifier chain
The Heterodyne Instrument for the Far-Infrared (HIFI) is one of three instruments to be launched aboard the Herschel Space Observatory (HSO) in 2009. HIFI will provide unprecedented spectral sensitivity and resolution between 490-1250 GHz and 1410-1910 GHz. In this paper, we report on the analysis of electrical standing waves that are present between the hot electron bolometer (HEB) heterodyne mixing element and the first low noise amplifier in the HIFI instrument. We show that the standing wave shape is not a standard sinusoid and difficult to remove from the resulting spectrum using standard fitting methods. We present a method to remove the standing waves based on data taken during the HIFI instrument level test, and anticipate the use of a similar calibration procedure in actual flight. Using the standing wave profile we obtain direct evidence of the complex IF output impedance of the HEB mixer
Detection of Interstellar Ortho-D2H+ with SOFIA
We report on the detection of the ground-state rotational line of ortho-D2H+ at 1.477 THz (203 mu m) using the German REceiver for Astronomy at Terahertz frequencies (GREAT) on. board the Stratospheric Observatory For Infrared Astronomy (SOFIA). The line is seen in absorption against. far-infrared continuum from the protostellar binary IRAS 16293-2422 in Ophiuchus. The para-D2H+ line at 691.7 GHz was not detected with the APEX telescope toward this position. These D2H+ observations complement our previous detections of para-H2D+ and ortho-H2D+ using SOFIA and APEX. By modeling chemistry and radiative transfer in the dense core surrounding the protostars, we find that the ortho-D2H+ and para-H2D+ absorption features mainly originate in the cool (T <18 K) outer envelope of the core. In contrast, the ortho-H2D+ emission from the core is significantly absorbed by the ambient molecular cloud. Analyses of the combined D2H+ and H2D+ data result in an age estimate of similar to 5. x. 10(5) yr for the core, with an uncertainty of similar to 2. x. 10(5) yr. The core material has probably been pre-processed for another 5. x. 10(5) years in conditions corresponding to those in the ambient molecular cloud. The inferred timescale is more than 10 times the age of the embedded protobinary. The D2H+ and H2D+ ions have large and nearly equal total (ortho+ para) fractional abundances of similar to 10(-9) in the outer envelope. This confirms the central role of H-3 + in the deuterium chemistry in cool, dense gas, and adds support to the prediction of chemistry models that also D-3(+) should be abundant in these conditions.Peer reviewe
Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids
To progress from the laboratory to commercial applications, it will be necessary to develop industrially scalable methods to produce large quantities of defect-free graphene. Here we show that high-shear mixing of graphite in suitable stabilizing liquids results in large-scale exfoliation to give dispersions of graphene nanosheets. X-ray photoelectron spectroscopy and Raman spectroscopy show the exfoliated flakes to be unoxidized and free of basal-plane defects. We have developed a simple model that shows exfoliation to occur once the local shear rate exceeds 10(4) s(-1). By fully characterizing the scaling behaviour of the graphene production rate, we show that exfoliation can be achieved in liquid volumes from hundreds of millilitres up to hundreds of litres and beyond. The graphene produced by this method performs well in applications from composites to conductive coatings. This method can be applied to exfoliate BN, MoS2 and a range of other layered crystals
Recommended from our members
Effect of Hydrocortisone on Mortality and Organ Support in Patients With Severe COVID-19: The REMAP-CAP COVID-19 Corticosteroid Domain Randomized Clinical Trial.
Importance: Evidence regarding corticosteroid use for severe coronavirus disease 2019 (COVID-19) is limited. Objective: To determine whether hydrocortisone improves outcome for patients with severe COVID-19. Design, Setting, and Participants: An ongoing adaptive platform trial testing multiple interventions within multiple therapeutic domains, for example, antiviral agents, corticosteroids, or immunoglobulin. Between March 9 and June 17, 2020, 614 adult patients with suspected or confirmed COVID-19 were enrolled and randomized within at least 1 domain following admission to an intensive care unit (ICU) for respiratory or cardiovascular organ support at 121 sites in 8 countries. Of these, 403 were randomized to open-label interventions within the corticosteroid domain. The domain was halted after results from another trial were released. Follow-up ended August 12, 2020. Interventions: The corticosteroid domain randomized participants to a fixed 7-day course of intravenous hydrocortisone (50 mg or 100 mg every 6 hours) (n = 143), a shock-dependent course (50 mg every 6 hours when shock was clinically evident) (n = 152), or no hydrocortisone (n = 108). Main Outcomes and Measures: The primary end point was organ support-free days (days alive and free of ICU-based respiratory or cardiovascular support) within 21 days, where patients who died were assigned -1 day. The primary analysis was a bayesian cumulative logistic model that included all patients enrolled with severe COVID-19, adjusting for age, sex, site, region, time, assignment to interventions within other domains, and domain and intervention eligibility. Superiority was defined as the posterior probability of an odds ratio greater than 1 (threshold for trial conclusion of superiority >99%). Results: After excluding 19 participants who withdrew consent, there were 384 patients (mean age, 60 years; 29% female) randomized to the fixed-dose (n = 137), shock-dependent (n = 146), and no (n = 101) hydrocortisone groups; 379 (99%) completed the study and were included in the analysis. The mean age for the 3 groups ranged between 59.5 and 60.4 years; most patients were male (range, 70.6%-71.5%); mean body mass index ranged between 29.7 and 30.9; and patients receiving mechanical ventilation ranged between 50.0% and 63.5%. For the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively, the median organ support-free days were 0 (IQR, -1 to 15), 0 (IQR, -1 to 13), and 0 (-1 to 11) days (composed of 30%, 26%, and 33% mortality rates and 11.5, 9.5, and 6 median organ support-free days among survivors). The median adjusted odds ratio and bayesian probability of superiority were 1.43 (95% credible interval, 0.91-2.27) and 93% for fixed-dose hydrocortisone, respectively, and were 1.22 (95% credible interval, 0.76-1.94) and 80% for shock-dependent hydrocortisone compared with no hydrocortisone. Serious adverse events were reported in 4 (3%), 5 (3%), and 1 (1%) patients in the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively. Conclusions and Relevance: Among patients with severe COVID-19, treatment with a 7-day fixed-dose course of hydrocortisone or shock-dependent dosing of hydrocortisone, compared with no hydrocortisone, resulted in 93% and 80% probabilities of superiority with regard to the odds of improvement in organ support-free days within 21 days. However, the trial was stopped early and no treatment strategy met prespecified criteria for statistical superiority, precluding definitive conclusions. Trial Registration: ClinicalTrials.gov Identifier: NCT02735707
- …