56 research outputs found

    Are traits that experience reinforcement also under sexual selection?

    Get PDF
    Where closely related species occur in sympatry, reinforcement may result in the evolution of traits involved in species recognition that are at the same time used for within-species mate choice. Drosophila serrata lives in forested habitat on the east coast of Australia, and over the northern half of its distribution it coexists with a closely related species, Drosophila birchii. Here we show that the strength of reinforcing selection in natural populations is sufficient to generate reproductive character displacement along a 36-km transect across the contact between sympatric and allopatric populations of D. serrata. The sympatric and allopatric populations display genetically based differences in male cuticular hydrocarbons ( CHCs), while female CHCs changed with latitude across the contact. The directional changes observed in male CHCs between sympatric and allopatric regions were the same changes that were generated by experimental sympatry in the laboratory, providing direct evidence that the changes across the contact zone are due to the presence of D. birchii. We show that sympatric and allopatric females differ in preference for male CHCs and that females from allopatric populations prefer allopatric-like male CHCs over sympatric-like CHCs. Male attractiveness within D. serrata may therefore be compromised by reinforcing selection, preventing the spread of sympatric-like blends to the area of allopatry

    Natural Selection And The Reinforcement Of Mate Recognition

    Get PDF
    Natural selection on mate recognition may often contribute to speciation, resulting in reproductive character displacement. Field populations of Drosophila serrata display reproductive character displacement in cuticular hydrocarbons when sympatric with Drosophila birchii. We exposed field sympatric and allopatric populations of D. serrata to experimental sympatry with D. birchii for nine generations. Cuticular hydrocarbons of field allopatric D. serrata populations evolved to resemble the field sympatric populations, whereas field sympatric D. serrata populations remained unchanged. Our experiment indicates that natural selection on mate recognition resulted in the field pattern of reproductive character displacement

    Composition of a chemical signalling trait varies with phylogeny and precipitation across an Australian lizard radiation

    Get PDF
    The environment presents challenges to the transmission and detection of animal signalling systems, resulting in selective pressures that can drive signal divergence amongst populations in disparate environments. For chemical signals, climate is a potentially important selective force because factors such as temperature and moisture influence the persistence and detection of chemicals. We investigated an Australian lizard radiation (Heteronotia) to explore relationships between a sexually dimorphic chemical signalling trait (epidermal pore secretions) and two key climate variables: temperature and precipitation. We reconstructed the phylogeny of Heteronotia with exon capture phylogenomics, estimated phylogenetic signal in amongst-lineage chemical variation and assessed how chemical composition relates to temperature and precipitation using multivariate phylogenetic regressions. High estimates of phylogenetic signal indicate that the composition of epidermal pore secretions varies amongst lineages in a manner consistent with Brownian motion, although there are deviations to this, with stark divergences coinciding with two phylogenetic splits. Accounting for phylogenetic non-independence, we found that amongst-lineage chemical variation is associated with geographic variation in precipitation but not temperature. This contrasts somewhat with previous lizard studies, which have generally found an association between temperature and chemical composition. Our results suggest that geographic variation in precipitation can affect the evolution of chemical signalling traits, possibly influencing patterns of divergence amongst lineages and species

    Initiation of speciation across multiple dimensions in a rock-restricted, tropical lizard

    Get PDF
    Population isolation and concomitant genetic divergence, resulting in strong phylogeographical structure, is a core aspect of speciation initiation. If and how speciation then proceeds and ultimately completes depends on multiple factors that mediate reproductive isolation, including divergence in genomes, ecology and mating traits. Here we explored these multiple dimensions in two young (Plio-Pleistocene) species complexes of gekkonid lizards (Heteronotia) from the Kimberley–Victoria River regions of tropical Australia. Using mitochondrial DNA screening and exon capture phylogenomics, we show that the rock-restricted Heteronotia planiceps exhibits exceptional fine-scale phylogeographical structure compared to the codistributed habitat generalist Heteronotia binoei. This indicates pervasive population isolation and persistence in the rock-specialist, and thus a high rate of speciation initiation across this geographically complex region, with levels of genomic divergence spanning the “grey zone” of speciation. Proximal lineages of H. planiceps were often separated by different rock substrates, suggesting a potential role for ecological isolation; however, phylogenetic incongruence and historical introgression were inferred between one such pair. Ecomorphological divergence among lineages within both H. planiceps and H. binoei was limited, except that limestone-restricted lineages of H. planiceps tended to be larger than rock-generalists. By contrast, among-lineage divergence in the chemical composition of epidermal pore secretions (putative mating trait) exceeded ecomorphology in both complexes, but with less trait overlap among lineages in H. planiceps. This system—particularly the rock-specialist H. planiceps—highlights the role of multidimensional divergence during incipient speciation, with divergence in genomes, ecomorphology and chemical signals all at play at very fine spatial scales

    Time in a Bottle: The Evolutionary Fate of Species Discrimination in Sibling Drosophila Species

    Get PDF
    Disadvantageous hybridization favors the evolution of prezygotic isolating behaviors, generating a geographic pattern of interspecific mate discrimination where members of different species drawn from sympatric populations exhibit stronger preference for members of their own species than do individuals drawn from allopatric populations. Geographic shifts in species' boundaries can relax local selection against hybridization; under such scenarios the fate of enhanced species preference is unknown. Lineages established from populations in the region of sympatry that have been maintained as single-species laboratory cultures represent cases where allopatry has been produced experimentally. Using such cultures dating from the 1950s, we assess how Drosophila pseudoobscura and D. persimilis mate preferences respond to relaxed natural selection against hybridization. We found that the propensity to hybridize generally declines with increasing time in experimental allopatry, suggesting that maintaining enhanced preference for conspecifics may be costly. However, our data also suggest a strong role for drift in determining mating preferences once secondary allopatry has been established. Finally, we discuss the interplay between populations in establishing the presence or absence of patterns consistent with reinforcement

    Simultaneously Hermaphroditic Shrimp Use Lipophilic Cuticular Hydrocarbons as Contact Sex Pheromones

    Get PDF
    Successful mating is essentially a consequence of making the right choices at the correct time. Animals use specific strategies to gain information about a potential mate, which is then applied to decision-making processes. Amongst the many informative signals, odor cues such as sex pheromones play important ecological roles in coordinating mating behavior, enabling mate and kin recognition, qualifying mate choice, and preventing gene exchange among individuals from different populations and species. Despite overwhelming behavioral evidence, the chemical identity of most cues used in aquatic organisms remains unknown and their impact and omnipresence have not been fully recognized. In many crustaceans, including lobsters and shrimps, reproduction happens through a cascade of events ranging from initial attraction to formation of a mating pair eventually leading to mating. We examined the hypothesis that contact pheromones on the female body surface of the hermaphroditic shrimp Lysmata boggessi are of lipophilic nature, and resemble insect cuticular hydrocarbon contact cues. Via chemical analyses and behavioural assays, we show that newly molted euhermaphrodite-phase shrimp contain a bouquet of odor compounds. Of these, (Z)-9-octadecenamide is the key odor with hexadecanamide and methyl linoleate enhancing the bioactivity of the pheromone blend. Our results show that in aquatic systems lipophilic, cuticular hydrocarbon contact sex pheromones exist; this raises questions on how hydrocarbon contact signals evolved and how widespread these are in the marine environment

    Cuticular Compounds Bring New Insight in the Post-Glacial Recolonization of a Pyrenean Area: Deutonura deficiens Deharveng, 1979 Complex, a Case Study

    Get PDF
    Background: In most Arthropod groups, the study of systematics and evolution rely mostly on neutral characters, in this context cuticular compounds, as non-neutral characters, represent an underexplored but potentially informative type of characters at the infraspecific level as they have been routinely proven to be involved in sexual attraction. Methods and Findings: The collembolan species complex Deutonura deficiens was chosen as a model in order to test the utility of these characters for delineating four infraspecific entities of this group. Specimens were collected for three subspecies (D. d. deficiens, D. d. meridionalis, D. d. sylvatica) and two morphotypes (D. d. sylvatica morphoype A and B) of the complex; an additional species D. monticola was added. Cuticular compounds were extracted and separated by gas chromatography for each individual. Our results demonstrate that cuticular compounds succeeded in separating the different elements of this complex. Those data allowed also the reconstruction of the phylogenetic relationships among them. Conclusions: The discriminating power of cuticular compounds is directly related to their involvement in sexual attraction and mate recognition. These findings allowed a discussion on the potential involvement of intrinsic and paleoclimatic factors in the origin and the diversification of this complex in the Pyrenean zone. This character type brings the first advanc

    Reproductive protein evolution in two cryptic species of marine chordate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reproductive character displacement (RCD) is a common and taxonomically widespread pattern. In marine broadcast spawning organisms, behavioral and mechanical isolation are absent and prezygotic barriers between species often operate only during the fertilization process. Such barriers are usually a consequence of differences in the way in which sperm and egg proteins interact, so RCD can be manifest as faster evolution of these proteins between species in sympatry than allopatry. Rapid evolution of these proteins often appears to be a consequence of positive (directional) selection. Here, we identify a set of candidate gamete recognition proteins (GRPs) in the ascidian <it>Ciona intestinalis </it>and showed that these GRPs evolve more rapidly than control proteins (those not involved in gamete recognition). Choosing a subset of these gamete recognition proteins that show evidence of positive selection (CIPRO37.40.1, CIPRO60.5.1, CIPRO100.7.1), we then directly test the RCD hypothesis by comparing divergence (omega) and polymorphism (McDonald-Kreitman, Tajima's D, Fu and Li's D and F, Fay and Wu's H) statistics in sympatric and allopatric populations of two distinct forms of <it>C. intestinalis </it>(Types A and B) between which there are strong post-zygotic barriers.</p> <p>Results</p> <p>Candidate gamete recognition proteins from two lineages of <it>C. intestinalis </it>(Type A and B) are evolving more rapidly than control proteins, consistent with patterns seen in insects and mammals. However, ω (d<sub>N</sub>/d<sub>S</sub>) is not significantly different between the sympatric and allopatric populations, and none of the polymorphism statistics show significant differences between sympatric and allopatric populations.</p> <p>Conclusions</p> <p>Enhanced prezygotic isolation in sympatry has become a well-known feature of gamete recognition proteins in marine broadcast spawners. But in most cases the evolutionary process or processes responsible for this pattern have not been identified. Although gamete recognition proteins in <it>C. intestinalis </it>do appear to evolve more rapidly, on average, than proteins with other functions, rates of evolution are not different in allopatric and sympatric populations of the two reproductively isolated forms. That sympatry is probably human-mediated, and therefore recent, may explain the absence of RCD.</p

    A simplified (modified) Duke Activity Status Index (M-DASI) to characterise functional capacity: A secondary analysis of the Measurement of Exercise Tolerance before Surgery (METS) study

    Get PDF
    Background Accurate assessment of functional capacity, a predictor of postoperative morbidity and mortality, is essential to improving surgical planning and outcomes. We assessed if all 12 items of the Duke Activity Status Index (DASI) were equally important in reflecting exercise capacity. Methods In this secondary cross-sectional analysis of the international, multicentre Measurement of Exercise Tolerance before Surgery (METS) study, we assessed cardiopulmonary exercise testing and DASI data from 1455 participants. Multivariable regression analyses were used to revise the DASI model in predicting an anaerobic threshold (AT) >11 ml kg −1 min −1 and peak oxygen consumption (VO 2 peak) >16 ml kg −1 min −1, cut-points that represent a reduced risk of postoperative complications. Results Five questions were identified to have dominance in predicting AT>11 ml kg −1 min −1 and VO 2 peak>16 ml.kg −1min −1. These items were included in the M-DASI-5Q and retained utility in predicting AT>11 ml.kg −1.min −1 (area under the receiver-operating-characteristic [AUROC]-AT: M-DASI-5Q=0.67 vs original 12-question DASI=0.66) and VO 2 peak (AUROC-VO2 peak: M-DASI-5Q 0.73 vs original 12-question DASI 0.71). Conversely, in a sensitivity analysis we removed one potentially sensitive question related to the ability to have sexual relations, and the ability of the remaining four questions (M-DASI-4Q) to predict an adequate functional threshold remained no worse than the original 12-question DASI model. Adding a dynamic component to the M-DASI-4Q by assessing the chronotropic response to exercise improved its ability to discriminate between those with VO 2 peak>16 ml.kg −1.min −1 and VO 2 peak<16 ml.kg −1.min −1. Conclusions The M-DASI provides a simple screening tool for further preoperative evaluation, including with cardiopulmonary exercise testing, to guide perioperative management

    Variations on a theme: diversification of cuticular hydrocarbons in a clade of cactophilic Drosophila

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We characterized variation and chemical composition of epicuticular hydrocarbons (CHCs) in the seven species of the <it>Drosophila buzzatii </it>cluster with gas chromatography/mass spectrometry. Despite the critical role of CHCs in providing resistance to desiccation and involvement in communication, such as courtship behavior, mating, and aggregation, few studies have investigated how CHC profiles evolve within and between species in a phylogenetic context. We analyzed quantitative differences in CHC profiles in populations of the <it>D. buzzatii </it>species cluster in order to assess the concordance of CHC differentiation with species divergence.</p> <p>Results</p> <p>Thirty-six CHC components were scored in single fly extracts with carbon chain lengths ranging from C<sub>29 </sub>to C<sub>39</sub>, including methyl-branched alkanes, <it>n</it>-alkenes, and alkadienes. Multivariate analysis of variance revealed that CHC amounts were significantly different among all species and canonical discriminant function (CDF) analysis resolved all species into distinct, non-overlapping groups. Significant intraspecific variation was found in different populations of <it>D. serido </it>suggesting that this taxon is comprised of at least two species. We summarized CHC variation using CDF analysis and mapped the first five CHC canonical variates (CVs) onto an independently derived <it>period </it>(<it>per</it>) gene + chromosome inversion + mtDNA COI gene for each sex. We found that the COI sequences were not phylogenetically informative due to introgression between some species, so only <it>per </it>+ inversion data were used. Positive phylogenetic signal was observed mainly for CV1 when parsimony methods and the test for serial independence (TFSI) were used. These results changed when no outgroup species were included in the analysis and phylogenetic signal was then observed for female CV3 and/or CV4 and male CV4 and CV5. Finally, removal of divergent populations of <it>D. serido </it>significantly increased the amount of phylogenetic signal as up to four out of five CVs then displayed positive phylogenetic signal.</p> <p>Conclusions</p> <p>CHCs were conserved among species while quantitative differences in CHC profiles between populations and species were statistically significant. Most CHCs were species-, population-, and sex-specific. Mapping CHCs onto an independently derived phylogeny revealed that a significant portion of CHC variation was explained by species' systematic affinities indicating phylogenetic conservatism in the evolution of these hydrocarbon arrays, presumptive waterproofing compounds and courtship signals as in many other drosophilid species.</p
    corecore