14 research outputs found

    Wannier representation of Floquet topological states

    Get PDF
    A universal feature of topological insulators is that they cannot be adiabatically connected to an atomic limit, where individual lattice sites are completely decoupled. This property is intimately related to a topological obstruction to constructing a localized Wannier function from Bloch states of an insulator. Here we generalize this characterization of topological phases toward periodically driven systems. We show that nontrivial connectivity of hybrid Wannier centers in momentum space and time can characterize various types of topology in periodically driven systems, which include Floquet topological insulators, anomalous Floquet topological insulators with micromotion-induced boundary states, and gapless Floquet states realized with topological Floquet operators. In particular, nontrivial time dependence of hybrid Wannier centers indicates impossibility of continuous deformation of a driven system into an undriven insulator, and a topological Floquet operator implies an obstruction to constructing a generalized Wannier function which is localized in real and frequency spaces. Our results pave a way to a unified understanding of topological states in periodically driven systems as a topological obstruction in Floquet states.Comment: 17 pages, 5 figure

    Topological phases of non-Hermitian systems

    Full text link
    Recent experimental advances in controlling dissipation have brought about unprecedented flexibility in engineering non-Hermitian Hamiltonians in open classical and quantum systems. A particular interest centers on the topological properties of non-Hermitian systems, which exhibit unique phases with no Hermitian counterparts. However, no systematic understanding in analogy with the periodic table of topological insulators and superconductors has been achieved. In this paper, we develop a coherent framework of topological phases of non-Hermitian systems. After elucidating the physical meaning and the mathematical definition of non-Hermitian topological phases, we start with one-dimensional lattices, which exhibit topological phases with no Hermitian counterparts and are found to be characterized by an integer topological winding number even with no symmetry constraint, reminiscent of the quantum Hall insulator in Hermitian systems. A system with a nonzero winding number, which is experimentally measurable from the wave-packet dynamics, is shown to be robust against disorder, a phenomenon observed in the Hatano-Nelson model with asymmetric hopping amplitudes. We also unveil a novel bulk-edge correspondence that features an infinite number of (quasi-)edge modes. We then apply the K-theory to systematically classify all the non-Hermitian topological phases in the Altland-Zirnbauer classes in all dimensions. The obtained periodic table unifies time-reversal and particle-hole symmetries, leading to highly nontrivial predictions such as the absence of non-Hermitian topological phases in two dimensions. We provide concrete examples for all the nontrivial non-Hermitian AZ classes in zero and one dimensions. In particular, we identify a Z2 topological index for arbitrary quantum channels. Our work lays the cornerstone for a unified understanding of the role of topology in non-Hermitian systems.Comment: 31 pages, 18 figures, 2 tables, to appear in Physical Review

    Zeno Hall Effect

    No full text

    Floquet Chiral Magnetic Effect

    No full text
    corecore