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A universal feature of topological insulators is that they cannot be adiabatically connected to an
atomic limit, where individual lattice sites are completely decoupled. This property is intimately
related to a topological obstruction to constructing a localized Wannier function from Bloch states
of an insulator. Here we generalize this characterization of topological phases toward periodically
driven systems. We show that nontrivial connectivity of hybrid Wannier centers in momentum
space and time can characterize various types of topology in periodically driven systems, which
include Floquet topological insulators, anomalous Floquet topological insulators with micromotion-
induced boundary states, and gapless Floquet states realized with topological Floquet operators. In
particular, nontrivial time dependence of hybrid Wannier centers indicates impossibility of continu-
ous deformation of a driven system into an undriven insulator, and a topological Floquet operator
implies an obstruction to constructing a generalized Wannier function which is localized in real
and frequency spaces. Our results pave a way to a unified understanding of topological states in
periodically driven systems as a topological obstruction in Floquet states.

I. INTRODUCTION

Topology has perpetually been playing a prominent
role in physics, providing understanding of an increas-
ing number of phenomena by relating them to rigorous
mathematical insights. Following the discovery of the
integer and fractional quantum Hall effects! 3, topologi-
cal invariants have been associated with concrete observ-
ables describing phases of matter that are accessible in
the laboratory. These concepts were reinvigorated with
the prediction and experimental verification of the topo-
logical insulator®®. In such topological insulators, the
presence of symmetry, time-reversal symmetry in this
case, furnishes a necessary condition for band structures
to host non-trivial topology. It was shortly realized that
the time-reversal symmetry is however not special in this
regard, and a classification of all topological band struc-
tures due to (anti-)unitary symmetries for every spatial
dimension rapidly emerged®”. In contrast to quantum
Hall effects, topological band insulators nonetheless re-
quire a crystal lattice. Recently, considerable attention
has focused on the effects of these additional symme-
tries, exposing a rather rich landscape of novel topo-
logical phases® !°. In crude essence, these results relate
symmetry concepts to compatibility relations, determin-
ing whether a Wannier description in terms of localized
functions is obstructed. The possibility of cataloguing
materials using these new tools has put these kinds of
studies actively on the agendal®.

In addition to the progress in understanding equilib-
rium topological phases, the past decade has witnessed
remarkable progress in extending the concept of topo-
logical phases of matter towards periodically driven sys-
tems, which are far from equilibrium!”3°. In a system
whose Hamiltonian varies periodically in time, the dis-
crete time-translation symmetry leads to a time analog of

the Bloch theorem, which is called the Floquet theorem.
The Floquet picture has enabled various intriguing pos-
sibilities of topological photo-dressed bands termed Flo-
quet topological insulators!”2!. Furthermore, it has been
revealed that Floquet systems possess even richer topo-
logical structures than static systems, leading to unique
topological phenomena absent in equilibrium!?-25:28:29,
Experimental realizations of Floquet topological states
have been reported with the help of developments in en-
gineering laser-driven quantum materials*6-38 photonic
systems3 4! acoustic systems*?*3, and cold atoms**4°.

All such Floquet topological states of non-interacting
fermions discussed in literature fall into one of the follow-
ing three distinct types of topology (precise definitions
of operators in the following are given in Sec. II): (i)
topology of a gapped effective Hamiltonian'” 2% H.g(k),
(ii) topology of a time-evolution operator?*30 U(k,t)
during one period, and (iii) topology of a Floquet
operator'®31733 (k) which is a time-evolution oper-
ator over one period. The topology of type (i) has
been discussed in the context of Floquet topological
insulators!”-20:21 In this case, the topological proper-
ties of effective photo-dressed bands are defined through
the effective static Hamiltonian H.g. The topology of
type (ii) leads to anomalous Floquet topological insu-
lators which fall outside the topological classification of
static insulators? 30, In this case, even if the topology
of the effective Hamiltonian is trivial, the topology of
a time-evolution operator characterizes nontrivial micro-
motion during one period and leads to anomalous edge
states which are absent in static cases. In contrast to
these two cases, the third class of topology (iii) does not
require a gapped Floquet band. It characterizes gap-
less quasienergy spectra which cannot be gapped out un-
der continuous deformation of a Floquet operator!?-31-33,
While the type (i) is quite similar to the topology in



static systems, the types (ii) and (iii) are genuinely drive-
induced topology, which has no analog in equilibrium
cases.

Despite the above rich structures in Floquet topolog-
ical states, the three types of topology (i)-(iii) are de-
fined through three distinct operators, and the math-
ematical classification of each type of operators re-
quires different conditions on the smooth deformation of
operators'?:26:28:32  On the other hand, topological insu-
lators in static systems can be characterized as a prop-
erty of Bloch states rather than a property of Hamiltoni-
ans. In fact, Bloch states of topological insulators form a
nontrivial vector bundle over the Brillouin zone, thereby
leading to a topological obstruction to adiabatic defor-
mation into an atomic limit. This property is closely
related to the fact that one cannot construct a Wan-
nier function localized in real space from Bloch states
of topological insulators?6-51. However, Floquet topo-
logical states have been characterized with topology of
operators, and topological characterization directly with
Floquet states is missing, except for Anderson-localized
Floquet insulators®?®3 and a few limiting cases®®. If the
three types of topology (i)-(iii) can be rewritten with
topological obstructions in Floquet states, such descrip-
tion may provide a coherent understanding of topology
in periodically driven systems, and the various types of
Floquet topological states can be discussed from a unified
viewpoint.

In this paper, we develop a state-based characteriza-
tion of Floquet topological states. To this end, we utilize
geometric phases, Berry connection, and Berry curva-
ture of Floquet states, and express topological invariants
of periodically driven systems with Floquet states. In
addition, we introduce a notion of “Wannier functions”
in periodically driven systems, and demonstrate that the
topological invariants can be extracted from nontrivial
connectivity of the (hybrid) Wannier centers over mo-
mentum space and time. From these results, we clarify
what kinds of topological obstructions exist in Floquet
topological states of each type.

In contrast to Bloch states of static insulators, a single-
particle Floquet state depends on momentum and time.
Thus, it is legitimate to expect that a Floquet topological
state has an obstruction to deforming a system into an
undriven insulator in an atomic limit, of which a state
is independent of momentum and time. Through the
Fourier transformation over the momentum and time,
such an undriven trivial insulator is characterized by a
generalized Wannier function which is localized not only
in real space, but also in the frequency domain. From
the topological characterization of Floquet states, we find
that each type of Floquet topological state has the follow-
ing obstructions to an undriven trivial insulator. First,
a Floquet topological insulator [type (i)] is character-
ized by Floquet states at a specific time slice located
at each driving period, and thus its topological obstruc-
tion is related only to the locality of Wannier functions
in real space. In contrast, a gapless Floquet topologi-

cal state [type (iii)] is characterized by an obstruction
to constructing a generalized Wannier function localized
in both real and frequency spaces, and can thus be re-
garded as a counterpart of topological insulators defined
on a coordinate-frequency lattice. Finally, an anomalous
Floquet topological insulator [type (ii)] is characterized
by nontrivial time dependence of Wannier centers, giving
an obstruction to continuously switching off the driving
while keeping a Floquet-band gap. Our work therefore
demonstrates that all the topological information in pe-
riodically driven systems can indeed be extracted from
Floquet wavefunctions over spacetime, providing a co-
herent framework parallel to static topological phases of
matter.

The rest of the paper is organized as follows. In Sec. II,
we introduce a notion of Wannier functions in period-
ically driven systems, and show that various geometric
phases in Floquet states can be regarded as centers of
the generalized Wannier functions. On the basis of the
Wannier representation in Floquet systems, we charac-
terize each type of Floquet topological states in subse-
quent sections. We start in Sec. III with Floquet topo-
logical insulators [type (i)]. In Sec. IV, we consider gap-
less Floquet topological states [type (iii)] characterized
by topological Floquet operators. In Sec. V, we proceed
to anomalous Floquet topological insulators [type (ii)].
We finish this paper by summarizing our results and dis-
cussing some outlooks in Sec. VI. In Appendix A, we
perform an explicit calculation of the geometric phases
of Floquet states using a solvable model of non-adiabatic
topological pumping. Appendix B provides a summary
of symmetries in periodically driven systems and corre-
sponding Altland-Zirnbauer symmetry class considered
in the main text. A detail of a calculation of a topologi-
cal invariant of time-reversal-symmetric gapless Floquet
states is presented in Appendix C.

II. WANNIER FUNCTIONS IN PERIODICALLY
DRIVEN SYSTEMS

We first introduce a notion of Wannier functions in
periodically driven systems. We consider a periodi-
cally driven system of non-interacting fermions described
by a time-dependent Bloch Hamiltonian H(k,t). Here
k= (k1, - ,kq) is a crystal momentum in d-dimensional
space, and the Hamiltonian satisfies a time-periodicity
condition H(k,t+T) = H(k,t) where T is the period of
driving. In periodically driven systems, the Floquet the-
orem states that a solution of the Schrodinger equation
i0; |0 (k,t)) = H(k,t) [¢(k,t)) is written as®®56

Yo (K, 1)) = e =B D, (K, 1)) . (1)

Here e4(k) is quasienergy of the a-th Floquet band,
and |®,(k,t)) is a Floquet-Bloch state, which satisfies
the time-periodicity |®,(k,t+T)) = |P.(k,t)). The
quasienergy and the Floquet-Bloch state are obtained



from an eigenvalue equation for a Floquet operator
U(k) = T exp [—z’ I dtH(k,t)}:

U(k)|@a(k,0)) = e~ ®T |0, (k,0)) . (2)
The time-evolved Floquet state |®,(k,t)) is given by

[Pa(k,t)) = e ® |y, (k, 1))

= Wt (K, 1) |04 (K, 0)), (3)

where U(k,t) = T exp [—z’ fot dt’H(k,t’)} is the time-
evolution operator (note that |14 (k,0)) = |®,(k,0))).

From Eq. (2), we define an effective Hamiltonian
Heg(k) = % log U(k), which satisfies

Heg (k) |90 (K, 0)) = o (k) |[Pa(k,0)). (4)

Here, we set the branch of the logarithm using a condition
—7/T <eq(k) <7/T.

In static systems, a Wannier function is defined
through the Fourier transformation of Bloch states®”.
Analogously, we introduce a time-dependent Wannier
function from a Floquet-Bloch state as

Iwa(R,t»E/BZ (;Zde’ikﬂ\@a(k,t)% (5)

where BZ denotes the first Brillouin zone. We also intro-
duce a hybrid Wannier function

™ dki
walRyiket) = [ G2 B (k,D), (©)

which is localized only in the j-th direction of the real
space, as in static cases®”. Here k, is the crystal mo-
mentum perpendicular to the j-th direction. In static
topological insulators, hybrid Wannier functions play an
important role in characterizing a topological obstruction
to constructing a Wannier function that is localized in all
directions of the real space*8-50:58-60,

In periodically driven systems, we can perform a
Fourier transformation in time direction

BN =5 [ e ag ). )

where w = 27/T is the frequency of the driving, and
m € Z. In analogy with Eq. (6), the m-th harmonics (7)
in the Floquet state can be regarded as a hybrid Wannier
function in the frequency domain. This interpretation
naturally leads to a definition of a generalized Wannier
function

|w(m)(R)> = l /T dt/ ﬂe—ik-R+imwt |(I) (k t)>
“ T Jo Bz (2m)7 e

(8)

which is localized in the real and frequency spaces.
Here we note that we require the continuity and peri-
odicity of the Floquet-Bloch state |®, (k, t)) in the crystal

momentum k to obtain localized Wannier functions (5)
and (8). If there exists an obstruction to taking a gauge in
which the Floquet-Bloch state is continuous and periodic
in k, the Wannier functions are not localized in the real
space®’. We also remark that one can take [, (k,t)) in-
stead of |®, (k,t)) to define the Wannier functions, since
the two states differ only by a phase factor in Eq. (1).
This gauge degree of freedom is also important for un-
derstanding of the localizability of the Wannier functions
of Floquet topological states. We come back to this point
in Sec. VL.

In static insulators, displacement of averaged positions
of Wannier functions from a lattice site is closely related
to the Berry phase of Bloch states. This property is also
important in modern formulation of electric polarization
in crystals®' %3, In the case of periodically driven sys-
tems, we define the Berry phase®%° of Floquet states
as
s

dkj <(I’oc(k’ t)| iakj |‘I)a(k7 t)> ) (9)

—T

’YJ(O() (kla t) =

which correspond to a hybrid Wannier center of Eq. (6)
and may also be regarded as electric polarization of the
a-th Floquet band. As a multiband generalization of the
Berry phase, eigenvalues of a Wilson loop®®

W;(ki,t) =Pexp

zj{ dk - A(k,t)] (10)
C.

J

can be used for a subset of Floquet
bands  {|®q(k, )} . Here, A%f(k,t) =
(Po(k,t)| 0k, |Ps(k,t)) (a,B = 1,---,Np) is the
non-Abelian Berry connection, C; is a closed path
parallel to the j-th axis in the momentum space, and P
denotes the path ordering.

On the other hand, a similar quantity in the time di-

rection

T
2 (k) = / dt (o (k,0)] 0, | @0 (ko t)) (1)

is not an adiabatic Berry phase, but a non-adiabatic ge-
ometric phase which was considered by Aharonov and
Anandan®”. Notably, an averaged position of the Floquet
state in the frequency domain is given by the Aharonov-

Anandan phase as follows®*:

o0

> (@ (k) mew 85 (k) = — = (k). (12)

m=—0o0

This is in a complete analogy with the modern theory
of polarization in insulators®1-%3. Also, as a non-Abelian
generalization of the non-adiabatic geometric phase®®, a
non-adiabatic Wilson loop for a subset of Floquet bands
{|®4 (K, 1))} | is defined by

T
Wi(k) = T exp lz /O tht(k,t)], (13)



where AY(k,t) =
1o ).

In general, we can use a Wilson loop along an arbi-
trary closed path in a momentum-time torus 79! =
BZx [0, T] instead of straight paths in Eqgs. (10) and (13).
Such Wilson loops along general paths may be useful in
characterizing Floquet topological states with crystalline
symmetries??:%97  In this paper, we use only simple
Wilson loops defined by Egs. (10) and (13).

In practical numerical implementation, one can only
know Floquet states on discrete points in the momentum-
time space. In this case, one may first discretize a path C'
into points (k™M tM), (k2 +2) ... (M) (M) and
then approximate a Wilson loop along C' by a product®!

(Pa(k, )] i0; |Ds(k,t)) (o, f =

M
D(C) = HM(k(ﬂJ(ﬂ; EUTD 4+ (14)

j=1

with an overlap matrix Mg(kW), t(0); g+ 10U+ =
(B (KUY 10+ Dg (kD) 19))), where we  set
(EM+D) ¢ (M+1)y - = (kM) ¢y We note that one
should take an argument of eigenvalues of D(C) to
obtain a numerical approximation of the Wilson-loop
eigenvalues, since D(C) is not a unitary matrix in
general.

III. FLOQUET TOPOLOGICAL INSULATORS:
TOPOLOGY OF H.g(k)

To characterize Floquet topological states with Wan-
nier representation, let us begin with Floquet topolog-
ical insulators, which are defined through the effective
Hamiltonian Heg (k). Suppose that a Floquet eigenspec-
trum of Heg (k) has a finite gap between Floquet bands.
Then, applying topological band theory of static insula-
tors, we can classify Floquet bands into certain topolog-
ical equivalence classes of insulators. When the Floquet
eigenspectrum possesses a topologically nontrivial band
in this sense, we say that this system is a Floquet topo-
logical insulator!?19-21,

From the above definition, we see that Floquet topolog-
ical insulators can be characterized by a property of Flo-
quet states, since the Floquet states |®,(k,0)) at t =0
play the role exactly same as Bloch states in static in-
sulators due to Eq. (4). In particular, Floquet states of
a topological Floquet band cannot be continuously de-
formed into momentum-independent states as long as the
Floquet band gap and symmetries of the system are kept.
This gives a state-based characterization of Floquet topo-
logical insulators.

Furthermore, the correspondence between Floquet
states at ¢ = 0 and Bloch states in static insulators
enables us to characterize Floquet topological insula-
tors with Wannier functions defined by Egs. (5) and (6).
For example, let us consider a Floquet Chern insulator,
which possesses a Floquet band with a nonzero Chern

4

number!7-20:75-83 Tt is known that in static Chern insu-
lators, one cannot construct a localized Wannier function
due to a topological obstruction®47. The topological ob-
struction can be characterized by nontrivial connectivity
of hybrid Wannier centers in momentum space*’. By
the same token, in a Floquet Chern insulator, a localized
Wannier function (5) cannot be constructed since one
cannot take a gauge of |®,(k,0)) that is smooth over
the whole Brillouin zone. Also, nontrivial connectivity of
hybrid Floquet-Wannier centers (9) at ¢ = 0 as a func-
tion of ko can characterize a Floquet Chern insulator.
Similarly, by applying known Wilson-loop characteriza-
tion of static topological insulators®50:58:59:84-86 e can
characterize various Floquet topological insulators, which
are protected by time-reversal symmetry?:37-89 or crys-
talline symmetries®?, with the ¢ = 0 Floquet-Wilson loop
(10) or its generalization to appropriate closed paths in
the Brillouin zone®* 36,

IV. GAPLESS FLOQUET TOPOLOGICAL
STATES: TOPOLOGY OF U(k)

A. Preliminaries

Next, we consider gapless Floquet topological states
characterized by topology of Floquet operators, which
has no analog in static systems'?32. A Floquet operator
U(k) defines a map from a d-dimensional Brillouin zone
to the space of N x N unitary matrices U(N) (N is the
number of Floquet bands within —7/T < e, < 7/T). If
this map is homotopically inequivalent to a trivial map
given by the N x N identity matrix U(k) = 1yxn, the
Floquet operator leads to a gapless quasienergy spectrum
which cannot be gapped out by a smooth deformation
of U(k), since any topologically trivial Floquet operator
can be deformed into U(k) = 1yxn, which possesses
a gapped (flat) quasienergy spectrum e,(k) = 0. A
topological classification of Floquet operators was per-
formed in Ref. 32. It was shown that the classifica-
tion of Floquet operators in d spatial dimensions coin-
cides with that of gapless surface states of static topo-
logical insulators/superconductors in d dimensions. This
implies that topologically nontrivial Floquet operators
lead to gapless quasienergy spectra akin to surface states
of static topological insulators/superconductors. For in-
stance, a chiral (helical) fermion dispersion emerges from
a topological Floquet operator in one-dimensional class
A (AID) systems'®3!. Recently, it was shown that a
single Weyl fermion, which appears as a surface state
of a four-dimensional topological insulator, can be real-
ized with a topological Floquet operator in three spatial
dimensions?233,

However, to achieve a topologically nontrivial Flo-
quet operator, one generally needs some additional con-
dition on Floquet driving. To see this, let us define
Un(k) = T exp[—i [, dtAH(K,t)] with 0 < A < 1. This
one-parameter family of Floquet operators clearly con-



nects a Floquet operator U(k) = Ux=1(k) with a triv-
ial unitary Ux—o(k) = 1yxn without changing symme-
tries of the unitary operators. This situation is similar to
that of static Bloch bands, for which an arbitrary Bloch
Hamiltonian H (k) can be continuously deformed into a
trivial Hamiltonian H (k) = 0 by using Hy(k) = AH (k),
if one does not impose an assumption that an occupied
band is separated from other bands by an energy gap. In
the case of Floquet operators, we assume that a Floquet
operator has a block-diagonal structure

Ulk) = <U1(§k) Uz?k)) : (15)

where U; (k) and Us(k) are N1 x Ny and No X Ny unitary
matrices, respectively. Physically, this condition means
that any initial state taken from the NNj-dimensional
Hilbert subspace returns to the same Hilbert subspace
after one driving period, while a time-dependent state
may make a detour from the subspace in intermedi-
ate time. The above condition is achieved by sev-
eral manners. For example, one may assume general-
ized adiabaticity'%3233, which confine a time-dependent
quantum state to the lower N; bands due to large
separation of energies between the lower and higher
bands. Note that this condition allows non-adiabatic
dynamics within the lower bands, which makes Floquet
states different from instantaneous eigenstates of a time-
dependent Hamiltonian'®. Also, one can fine-tune a
driving protocol to achieve a block-diagonalized Floquet
unitary3'32 (for an example, see Appendix A). As an-
other realization, a topological unitary operator emerges
as an edge unitary of an anomalous Floquet topological
insulator?®32:99 " where U; (k) and Us(k) correspond to
Floquet operators for states localized at one boundary
and the other boundary, respectively. The restriction to
Ui (k) plays a role similar to the restriction to occupied
bands in static topological insulators, which enables us
to discuss consequences arising from nontrivial topology.
In the rest part of this section, we assume this condition
and consider the topology of U (k).

B. Class Aind=1

As the simplest example of gapless Floquet topological
states, we consider a one-dimensional system without any
symmetry except for charge conservation. The topologi-
cal invariant of a Floquet operator is given by a winding
number!?

ERy dkTr[U] (k)i Uy (k)]

W-
Y=o

—T

/_W Z_:aga , (16)

which takes an integer value. In Eq. (16), Tr denotes
the trace over the Ni-dimensional Hilbert subspace. As

inferred from the second line of Eq. (16), this topolog-
ical invariant counts a winding number of quasienergy
spectra over the Brillouin zone. If the winding num-
ber is nonzero, the quasienergy dispersion is topologically
equivalent to W; chiral fermions'? [see Fig. 1 (a)]. An
example of topological Floquet operators in this class is
given by the Thouless pumping®! and its non-adiabatic
generalization®°294_ in which the quantized pumped
charge is equal to the winding number'®. In Appendix
A, we present an explicit calculation using a model of the
non-adiabatic Thouless pumping.

The topological invariant (16) is defined through the
Floquet operator. However, we can express the same
invariant using the Floquet state itself. To show this, let
us substitute Eq. (1) into the Schrédinger equation. We
obtain

(H(k,1) = i0;) [Da(k,1)) = ea(k) [Ralk, 1)) . (17)

Integrating the both sides in this equation over one pe-

riod, we havel”
1 [T 1 (o
calk) = o [t (@ k) H Ok, 1) 0 (k. 1)~ 2 ()
0
(18)
where 'yt(a) (k) is the Aharonov-Anandan phase defined in
Eq. (11). Thus, we obtain

(@) (g
le—i dkza (19)

since the first term of the right hand side in Eq. (18)
(the dynamical phase) is a periodic function of k. Since
the Aharonov-Anandan phase is defined with the Flo-
quet state, the winding number (19) is calculated di-
rectly from the Floquet state. If the winding number
is nonzero, it leads to nontrivial connectivity of centers
of hybrid Wanner functions in the frequency domain de-
fined in Eq. (7). Namely, since the frequency-domain
polarization is “pumped” by W; (in the unit of w) in to-
tal when k is swept over the Brillouin zone, the hybrid
Wannier centers are switched to their neighbors at the
edge of the Brillouin zone, as illustrated in Fig. 1 (c) (see
also Ref. 54).

On the other hand, the same invariant (16) can be

rewritten as!®
1 M
W =o— /_deazl< (k,0)| U} (k)idpUy (k) |®a(k, 0))
1 &
=5 (Y N(T) —v*(0)), (20)
a=1
where ¥ (t) = [T _dk (a(k,t)|i0k [Ya(k,t)) is the

Berry phase. Since the Berry phase 7(®)(t) describes a
polarization of a time-dependent Wannier function (6),
Eq. (20) can be interpreted as quantized pumping of
Wannier centers over one period, which is nothing but the



(@) 1.0 (b) 1.0
0.5 0.5
=
& o0 & o0
W W
-05 -05
-1. -1.
%% Z05 00 05 10 9% 205 00 05 10
k/r k/m
(©) (d) !
w
S o0 N
-w
-1 0 1% 0 1 2
K/ y2m

FIG. 1. (a) An example of quasienergy spectrum that gives a
unit winding number W7 = 1. (b) An example of quasienergy
spectrum that gives a nontrivial Zs invariant v = 1. The
colors of the lines correspond to different Floquet bands. (c)
Schematic illustration of change in the Aharonov-Anandan
phase v¢(k) (mod 27) in the Thouless pumping. (d) Schematic
illustration of change in real-space Wannier centers (the Berry
phase 7(t) mod 27) during the Thouless pumping.

Thouless pumping®'. Consequently, the hybrid Wannier
center (6) in real space also exhibits nontrivial connectiv-
ity in the time domain [see Fig. 1 (d)]. This situation is
completely analogous to that in static Chern insulators?”.

In fact, the expression (20) leads to

1 T s
= = — F 21
Wy = Cy %TA dﬁ/ﬁdké; kD), (21)

where  F,(k,t) = (02t (K, 1) |0k (K 1)) —
(Oka(k, )0 (k,t)) is the Berry curvature, and
thus C5 is the first Chern number of the Floquet
states!®. A mnonzero Chern number signifies that one
cannot take a gauge of Floquet states which is contin-
uous and periodic in the momentum-time torus, since
such a gauge makes a Chern number (21) vanishing by
the Stokes’ theorem. The absence of a global gauge
of Floquet states implies that one cannot construct
a generalized Wannier function (8) which is localized
in the real space and the frequency space. Hence, we
arrive at a conclusion that the winding number (16)
characterizes a topological obstruction of Floquet states
to constructing a generalized Wannier function (8).
We note that a model for the Thouless pumping is
actually regarded as a Chern insulator defined on a
coordinate-frequency lattice3®.

C. Class AIlind=1,2

As the second example, we consider class AIl Floquet
systems which have the time-reversal symmetry!%26-28

OH(k,t)0~ ! = H(—k, —t) (22)

with ©2 = —1 (see Appendix B). In spatial dimension
d = 1, Floquet operators in class AII are classified?? by
Zo. This coincides with the classification of d = 2 class
ATl topological insulators and also with the classification
of d = 1 adiabatic spin pumping®. The Z, topological
invariant of a class AIl Floquet operator in d = 1 is given
by96

(—1) = PEVIUL(0)]  PEVIU, ()]
/et VUL (0)] 1/ det VI ()]

where Vg denotes the unitary part of the time-reversal
operator © = Vg K with VoV§ = —1nxxn (K is complex
conjugation). Here Pf[A] is the Pfaffian of an antisym-
metric matrix A. In fact, the time-reversal symmetry of
the Floquet operator (B7) leads to

; (23)

VoU; (k) = U{ (—k)Ve, (24)

which indicates that Vg Ui(k = 0 or ) is an antisymmet-
ric matrix. If the topological invariant takes a nontriv-
ial value v = 1, the quasienergy spectrum hosts gapless
helical dispersion which cannot be gapped out under the
time-reversal symmetry due to the Kramers degeneracy>?
[see Fig. 1 (b)].

We can rewrite the Z, invariant using Floquet states
as (see Appendix C)

(1) = Pflw(0,0)] Pflw(m,0)]

 /det[w(0,0)] y/det[w(r, 0)]
Pflw(0,T/2)]  Pflw(r, T/2)]

"/ detfw(0,172)] /det[w(r, T/2)]

with was(k,t) = (da(—k,—0)|© Ws(k,8) (@8 =
1,--+,Ny). Notably, Eq. (25) has the form same as
the Zo invariant of adiabatic spin pumping®® (see also
Ref. 97), which characterizes difference of time-reversal
polarization between ¢ = 0 and ¢t = T/2. The same in-
variant also characterizes a static class AIIl topological
insulators in two spatial dimensions, by regarding the
time as a momentum in the second dimension. However,
here |1, (k, 1)) is a Floquet state, which is not necessarily
an eigenstate of an instantaneous Hamiltonian.

Building on this observation, we can compute the Zo
topological invariant (25) from the connectivity of hy-
brid Wannier centers. As in adiabatic spin pumping or
Zs topological insulators*®°° time evolution of time-
reversal polarization can be tracked by computing eigen-
values of a Wilson loop (10) along the spatial direction.
Since the time-reversal polarization corresponds to differ-
ence of charge polarizations between time-reversal pairs,
the hybrid Wannier centers switch their time-reversal
partners during the time evolution from ¢ =0 to t = T'/2
if the Zs invariant takes the nontrivial value (v = 1).
This also gives a clear physical interpretation of a topo-
logical Floquet operator characterized by the Zs invari-
ant (23); under a Floquet driving with a Zs topologi-
cal Floquet operator, a time-reversal partner of Floquet-
Wannier centers is pumped in opposite directions during

(25)




the half of the period. Thus, the class AIIl topological
Floquet driving provides a non-adiabatic generalization
of the Fu-Kane Zs spin pumping.

Here we note that the same invariant (25) can also
be calculated from the non-adiabatic Wilson loop (13),
whose eigenvalues give non-adiabatic geometric phases,
since the role of the momentum and time can be inter-
changed in Eq. (25). In a Floquet driving with a topolog-
ical Floquet operator with ¥ = 1, the non-adiabatic ge-
ometric phases show nontrivial evolution between k = 0
and k = .

The characterization of topological invariant with Flo-
quet states [Eq. (25)] also indicates a topological ob-
struction in the Floquet states. Let us consider a time-

dependent gauge transformation of Floquet states given
by

Da (k. t)) Zvaa (k,t) [1hp(k, 1)) | (26)

where V(k,t) is a unitary matrix. Since the first Chern
number (21) vanishes in time-reversal-symmetric sys-
tems, we can take a gauge in which the transformed
Floquet state |14 (k,t)) is continuous and periodic in
(k,t).  Although |14 (k,t)) is no longer a solution
of the Schridinger equation, the generalized Wannier
function (8) constructed from |[iq(k,t)) is well local-
ized in the real and frequency spaces. However, in a
class AII system, the Floquet states form time-reversal
pairs [11,4(k, 1)), [¥2,0(k,t)) (a =1,--- , N1/2), where we
switch the label of Floquet states from « to (m,a)(m =
1,2). Then, let us additionally impose a time-reversal
condition on the Floquet states*®50:95;

"J}l,a(_ka _t)> =0 ‘1/;2,04(]{’15» ’
W;Q,a(—‘lﬁ _t)> =-0 |¢_jl,a(k7t)> .

(27a)
(27Db)

Since the Zy invariant (25) is invariant under the gauge
transformation (26), the time-reversal polarization com-
puted in this gauge exhibits nonzero pumping between
t =0 and t = T'/2. However, since the time-reversal con-
dition (27a), (27b) forces the time-reversal polarization
to vanish, a nontrivial value of the Z, invariant (v = 1)
implies that the time-reversal condition cannot be sat-
isfied in the whole (k,t) space. Conversely, if we im-
pose the time-rev