15 research outputs found

    Restoration of Sp4 in Forebrain GABAergic Neurons Rescues Hypersensitivity to Ketamine in Sp4 Hypomorphic Mice.

    Get PDF
    BackgroundKetamine produces schizophrenia-like behavioral phenotypes in healthy people. Prolonged ketamine effects and exacerbation of symptoms after the administration of ketamine have been observed in patients with schizophrenia. More recently, ketamine has been used as a potent antidepressant to treat patients with major depression. The genes and neurons that regulate behavioral responses to ketamine, however, remain poorly understood. Sp4 is a transcription factor for which gene expression is restricted to neuronal cells in the brain. Our previous studies demonstrated that Sp4 hypomorphic mice display several behavioral phenotypes relevant to psychiatric disorders, consistent with human SP4 gene associations with schizophrenia, bipolar disorder, and major depression. Among those behavioral phenotypes, hypersensitivity to ketamine-induced hyperlocomotion has been observed in Sp4 hypomorphic mice.MethodsIn the present study, we used the Cre-LoxP system to restore Sp4 gene expression, specifically in either forebrain excitatory or GABAergic inhibitory neurons in Sp4 hypomorphic mice. Mouse behavioral phenotypes related to psychiatric disorders were examined in these distinct rescue mice.ResultsRestoration of Sp4 in forebrain excitatory neurons did not rescue deficient sensorimotor gating nor ketamine-induced hyperlocomotion. Restoration of Sp4 in forebrain GABAergic neurons, however, rescued ketamine-induced hyperlocomotion, but did not rescue deficient sensorimotor gating.ConclusionsOur studies suggest that the Sp4 gene in forebrain GABAergic neurons regulates ketamine-induced hyperlocomotion

    Over-expression of XIST, the Master Gene for X Chromosome Inactivation, in Females With Major Affective Disorders

    Get PDF
    Background: Psychiatric disorders are common mental disorders without a pathological biomarker. Classic genetic studies found that an extra X chromosome frequently causes psychiatric symptoms in patients with either Klinefelter syndrome (XXY) or Triple X syndrome (XXX). Over-dosage of some X-linked escapee genes was suggested to cause psychiatric disorders. However, relevance of these rare genetic diseases to the pathogenesis of psychiatric disorders in the general population of psychiatric patients is unknown. Methods: XIST and several X-linked genes were studied in 36 lymphoblastoid cell lines from healthy females and 60 lymphoblastoid cell lines from female patients with either bipolar disorder or recurrent major depression. XIST and KDM5C expression was also quantified in 48 RNA samples from postmortem human brains of healthy female controls and female psychiatric patients. Findings: We found that the XIST gene, a master in control of X chromosome inactivation (XCI), is significantly over-expressed (p = 1 × 10−7, corrected after multiple comparisons) in the lymphoblastoid cells of female patients with either bipolar disorder or major depression. The X-linked escapee gene KDM5C also displays significant up-regulation (p = 5.3 × 10−7, corrected after multiple comparisons) in the patients' cells. Expression of XIST and KDM5C is highly correlated (Pearson's coefficient, r = 0.78, p = 1.3 × 10−13). Studies on human postmortem brains supported over-expression of the XIST gene in female psychiatric patients. Interpretations: We propose that over-expression of XIST may cause or result from subtle alteration of XCI, which up-regulates the expression of some X-linked escapee genes including KDM5C. Over-expression of X-linked genes could be a common mechanism for the development of psychiatric disorders between patients with those rare genetic diseases and the general population of female psychiatric patients with XIST over-expression. Our studies suggest that XIST and KDM5C expression could be used as a biological marker for diagnosis of psychiatric disorders in a significantly large subset of female patients. Research in context: Due to lack of biological markers, diagnosis and treatment of psychiatric disorders are subjective. There is utmost urgency to identify biomarkers for clinics, research, and drug development. We found that XIST and KDM5C gene expression may be used as a biological marker for diagnosis of major affective disorders in a significantly large subset of female patients from the general population. Our studies show that over-expression of XIST and some X-linked escapee genes may be a common mechanism for development of psychiatric disorders between the patients with rare genetic diseases (XXY or XXX) and the general population of female psychiatric patients

    Wet or dry: translatable “water mazes” for mice and humans

    No full text
    Although the cognitive and biological characteristics of Alzheimer’s disease (AD) are well known and mouse models of AD are available, current treatments for AD-related cognitive deficits have quite limited efficacy. The development of tasks with cross-species validity may enable better prediction of the efficacy of potential new treatments. In this issue of the JCI, Possin et al. present a virtual version of the Morris water maze (a common test of spatial learning and memory for rodents) that is designed for use with humans. The authors tested a mouse model of AD (transgenic mice expressing human amyloid precursor protein [hAPP]) and patients in the earlier mild cognitive impairment (MCI) stage of AD in their respective versions of the maze. Using novel statistical methods, they detected similar deficits across species, providing support for the hAPP model and use of the virtual water maze. Importantly, this work enabled recommendations for appropriate sample sizes when developing potential therapeutics for AD

    Nicotine improves probabilistic reward learning in wildtype but not alpha7 nAChR null mutants, yet alpha7 nAChR agonists do not improve probabilistic learning

    No full text
    Cognitive impairments, e.g., reward learning, are present in various psychiatric disorders and warrant treatment. Improving reward-related learning could synergistically enhance psychosocial treatments and cognition generally. A critical first step is to understand the mechanisms underlying reward learning. The dopamine system has been implicated in such learning, but less known is how indirect activation of this system may affect reward learning. We determined the role of alpha7 nicotinic acetylcholine receptors (nAChR) on a probabilistic reversal learning task (PRLT) in mice that includes reward and punishment. Male alpha7 knockout (KO), heterozygous (HT), and wildtype (WT) littermate mice (n = 84) were treated with vehicle, 0.03, or 0.3 mg/kg nicotine. Two cohorts of C57BL/6NJ male mice were treated with various alpha7 nAChR ligands, including the full agonists PNU282877 and AR-R-17779, the positive allosteric modulator CCMI, the partial agonist SSR180711, and the antagonist methyllycaconitine. All mice were then tested in the PRLT. Nicotine (0.3 mg/kg) significantly improved initial reward learning in alpha7 WT and HT mice but did not improve learning in KO mice, suggesting an involvement of the alpha7 nAChR in the pro-learning effects of nicotine. Neither alpha7 nAChR treatments (PNU282987, AR-R-17779, CCMI, SSR180711, nor methyllycaconitine) affected mouse PRLT performance however. Nicotine improved reward learning via a mechanism that may include alpha7 nAChRs. This improvement unlikely relied solely on alpha7 nAChRs however, since no alpha7 nAChR ligand improved reward learning in normal mice. Future assessments of the effects of other nAChR subtypes on reward learning are needed

    Reduced Dopamine Transporter Functioning Induces High-Reward Risk-Preference Consistent with Bipolar Disorder

    No full text
    Individuals with bipolar disorder (BD) exhibit deleterious decision making, negatively impacting their lives. Such aberrant decision making can be quantified using the Iowa Gambling Task (IGT), which requires choosing between advantageous and disadvantageous options based on different reward/punishment schedules. The mechanisms underlying this behavioral deficit are unknown, but may include the reduced dopamine transporter (DAT) functioning reported in BD patients. Using both human and mouse IGTs, we tested whether reduced DAT functioning would recreate patterns of deficient decision making of BD patients. We assessed the IGT performance of 16 BD subjects (7 female) and 17 healthy control (HC) subjects (12 female). We recorded standard IGT performance measures and novel post-reward and post-punishment decision-making strategies. We characterized a novel single-session mouse IGT using C57BL/6J mice (n = 44). The BD and HC IGT performances were compared with the effects of chronic (genetic knockdown (KD; n = 31) and wild-type (n = 28) mice) and acute (C57BL/6J mice (n = 89) treated with the DAT inhibitor GBR12909) reductions of DAT functioning in mice performing this novel IGT. BD patients exhibited impaired decision making compared with HC subjects. Both the good-performing DAT KD and GBR12909-treated mice exhibited poor decision making in the mouse IGT. The deficit of each population was driven by high-reward sensitivity. The single-session mouse IGT measures dynamic risk-based decision making similar to humans. Chronic and acute reductions of DAT functioning in mice impaired decision-making consistent with poor IGT performance of BD patients. Hyperdopaminergia caused by reduced DAT may impact poor decision making in BD patients, which should be confirmed in future studies
    corecore