901 research outputs found

    Study of thin film large area photovoltaic solar energy converter Third quarterly report, 25 Apr. - 24 Jul. 1966

    Get PDF
    Cadmium sulfide-thin film large area photovoltaic solar energy converter - plastic substrate cell fabrication and stability testing under various conditions of temperature and humidit

    Minimal Flavor Constraints for Technicolor

    Get PDF
    We analyze the constraints on the the vacuum polarization of the standard model gauge bosons from a minimal set of flavor observables valid for a general class of models of dynamical electroweak symmetry breaking. We will show that the constraints have a strong impact on the self-coupling and masses of the lightest spin-one resonances. Our analysis is applicable to any four and higher dimensional extension of the standard model reducing to models of dynamical electroweak symmetry breaking.Comment: 26 pages, we have added appendix C and some references and corrected some typo

    Development of cadmium sulfide thin film photovoltaic cells third quarterly report, apr. 15 - jul. 14, 1965

    Get PDF
    Cadmium sulfide thin film photovoltaic cells - cadmium sulfide film evaporation, cell testing, improvement, and stability, and plastic and metal substrate cell

    Composite Higgs to two Photons and Gluons

    Get PDF
    We introduce a simple framework to estimate the composite Higgs boson coupling to two-photon in Technicolor extensions of the standard model. The same framework allows us to predict the composite Higgs to two-gluon process. We compare the decay rates with the standard model ones and show that the corrections are typically of order one. We suggest, therefore, that the two-photon decay process can be efficiently used to disentangle a light composite Higgs from the standard model one. We also show that the Tevatron results for the gluon-gluon fusion production of the Higgs either exclude the techniquarks to carry color charges to the 95% confidence level, if the composite Higgs is light, or that the latter must be heavier than around 200 GeV.Comment: RevTex 7 pages, 6 figure

    Pressure to order g8log(g)g^8*log(g) in ϕ4\phi^4-theory at weak coupling

    Full text link
    We calculate the pressure of massless ϕ4\phi^4-theory to order g8log(g)g^8\log(g) at weak coupling. The contributions to the pressure arise from the hard momentum scale of order TT and the soft momentum scale of order gTgT. Effective field theory methods and dimensional reduction are used to separate the contributions from the two momentum scales: The hard contribution can be calculated as a power series in g2g^2 using naive perturbation theory with bare propagators. The soft contribution can be calculated using an effective theory in three dimensions, whose coefficients are power series in g2g^2. This contribution is a power series in gg starting at order g3g^3. The calculation of the hard part to order g6g^6 involves a complicated four-loop sum-integral that was recently calculated by Gynther, Laine, Schr\"oder, Torrero, and Vuorinen. The calculation of the soft part requires calculating the mass parameter in the effective theory to order g6g^6 and the evaluation of five-loop vacuum diagrams in three dimensions. This gives the free energy correct up to order g7g^7. The coefficients of the effective theory satisfy a set of renormalization group equations that can be used to sum up leading and subleading logarithms of T/gTT/gT. We use the solutions to these equations to obtain a result for the free energy which is correct to order g8log(g)g^8\log(g). Finally, we investigate the convergence of the perturbative series.Comment: 29 pages and 12 figs. New version: we have pushed the calculations to g^8*log(g) using the renormalization group to sum up log(g) from higher orders. Published in JHE

    Towards Open Information Management in Health Care

    Get PDF
    The utilization of information technology as tool in health care is increasing. The main benefits stem from the fact that information in electronic form can be transferred to different locations rapidly and from the possibility to automate certain information management tasks. The current technological approach for this automation relies on structured, formally coded representation of information. We discuss the limitations of the current technological approach and present a viewpoint, grounded on previous research and the authors’ own experiences, on how to progress. We present that a bottleneck in the automation of the management of constantly evolving clinical information is caused by the fact that the current technological approach requires the formal coding of information to be static in nature. This inherently hinders the expandability of the information case space to be managed. We present a new paradigm entitled open information management targeting unlimited case spaces. We also present a conceptual example from clinical medicine demonstrating open information management principles and mechanisms
    corecore