14 research outputs found

    An investigation of mHealth and digital health literacy among new parents during COVID-19

    Get PDF
    IntroductionEspecially during the COVID-19 pandemic, parents were expected to understand increasingly sophisticated information about health issues and healthcare systems and access online resources as a part of their caregiving role. Yet little is known about parents' online digital technology use and digital health literacy skill. This study aimed to investigate parents' digital technology use, their self-reported digital health literacy skill, and demographic information as potential factors influencing their use of digital technologies.MethodsAn online survey utilizing convenience sampling was administered to new parents during the COVID-19 pandemic that inquired about their demographic information, digital technology use, and digital health literacy skills within Ontario, Canada.ResultsA total of 151 individuals responded to the survey; these were primarily mothers (80%) who self-reported as white (72%), well-educated 86%), heterosexual (86%) females (85%) with incomes over $100,00 per year (48%). Participants reported consistent and persistent online activity related to their parenting role and mostly via mobile smartphone devices (92%). Participants had moderate to high digital health literacy skills, greater than the Canadian national average. Almost half of participants reported negative health and well-being consequences from their digital online behaviours. There were no significant relationships between technology use, digital health literacy skill, and demographic variables.DiscussionThe COVID-19 pandemic has reinforced the need for and importance of effective and equitable digital health services. Important opportunities exist within clinical practice and among parenting groups to proactively address the physical and mental health implications of digital parenting practices. Equally important are opportunities to insert into clinical workflow the inquiry into parents' online information-seeking behaviours, and to include digital health literacy as part of prenatal/postnatal health education initiatives

    Digital technology and disease surveillance in the COVID-19 pandemic: A scoping review protocol

    Get PDF
    Introduction Infectious diseases pose a risk to public health, requiring efficient strategies for disease prevention. Digital health surveillance technologies provide new opportunities to enhance disease prevention, detection, tracking, reporting and analysis. However, in addition to concerns regarding the effectiveness of these technologies in meeting public health goals, there are also concerns regarding the ethics, legality, safety and sustainability of digital surveillance technologies. This scoping review examines the literature on digital surveillance for public health purposes during the COVID-19 pandemic to identify health-related applications of digital surveillance technologies, and to highlight discussions of the implications of these technologies. Methods and analysis The scoping review will be guided by the framework proposed by Arksey and O\u27Malley and the guidelines outlined by Colquhoun et al and Levac et al. We will search Medline (Ovid), PsycInfo, PubMed, Scopus, CINAHL (EBSCOhost), ACM Digital Library, Google Scholar and IEEE Explore for relevant studies published between December 2019 and December 2020. The review will also include grey literature. Data will be managed and analysed through an extraction table and thematic analysis. Ethics and dissemination Findings will be disseminated through traditional academic channels, as well as social media channels and research briefs and infographics. We will target our dissemination to provincial and federal public health organisations, as well as technology companies and community-based organisations managing the public response to the COVID-19 pandemic

    Mapping quantitative trait loci associated with leaf rust resistance in five spring wheat populations using single nucleotide polymorphism markers

    Get PDF
    Growing resistant wheat (Triticum aestivum L) varieties is an important strategy for the control of leaf rust, caused by Puccinia triticina Eriks. This study sought to identify the chromosomal location and effects of leaf rust resistance loci in five Canadian spring wheat cultivars. The parents and doubled haploid lines of crosses Carberry/AC Cadillac, Carberry/Vesper, Vesper/Lillian, Vesper/Stettler and Stettler/Red Fife were assessed for leaf rust severity and infection response in field nurseries in Canada near Swift Current, SK from 2013 to 2015, Morden, MB from 2015 to 2017 and Brandon, MB in 2016, and in New Zealand near Lincoln in 2014. The populations were genotyped with the 90K Infinium iSelect assay and quantitative trait loci (QTL) analysis was performed. A high density consensus map generated based on 14 doubled haploid populations and integrating SNP and SSR markers was used to compare QTL identified in different populations. AC Cadillac contributed QTL on chromosomes 2A, 3B and 7B (2 loci), Carberry on 1A, 2B (2 loci), 2D, 4B (2 loci), 5A, 6A, 7A and 7D, Lillian on 4A and 7D, Stettler on 2D and 6B, Vesper on 1B, 1D, 2A, 6B and 7B (2 loci), and Red Fife on 7A and 7B. Lillian contributed to a novel locus QLr.spa-4A, and similarly Carberry at QLr.spa-5A. The discovery of novel leaf rust resistance QTL QLr.spa-4A and QLr.spa-5A, and several others in contemporary Canada Western Red Spring wheat varieties is a tremendous addition to our present knowledge of resistance gene deployment in breeding. Carberry demonstrated substantial stacking of genes which could be supplemented with the genes identified in other cultivars with the expectation of increasing efficacy of resistance to leaf rust and longevity with little risk of linkage drag

    Genetic mapping of leaf rust (Puccinia triticina Eriks) resistance genes in six Canadian spring wheat cultivars

    Get PDF
    The Canada Western Red Spring wheat (Triticum aestivum L.) cultivars AAC Concord, AAC Prevail, CDC Hughes, Lillian, Glenlea, and elite line BW961 express a spectrum of resistance to leaf rust caused by Puccinia triticina Eriks. This study aimed to identify and map the leaf rust resistance of the cultivars using three doubled haploid populations, AAC Prevail/BW961 (PB), CDC Hughes/AAC Concord (HC), and Lillian/Glenlea (LG). The populations were evaluated for seedling resistance in the greenhouse and adult plant disease response in the field at Morden, MB for 3 years and genotyped with the 90K wheat Infinium iSelect SNP array. Genetic maps were constructed to perform QTL analysis on the seedling and field leaf rust data. A total of three field leaf rust resistance QTL segregated in the PB population, five in the HC, and six in the LG population. In the PB population, BW961 contributed two QTL on chromosomes 2DS and 7DS, and AAC Prevail contributed a QTL on 4AL consistent across trials. Of the five QTL in HC, AAC Concord contributed two QTL on 4AL and 7AL consistent across trials and a QTL on 3DL.1 that provided seedling resistance only. CDC Hughes contributed two QTL on 1DS and 3DL.2. Lillian contributed four QTL significant in at least two of the three trials on 2BS, 4AL, 5AL, and 7AL, and Glenlea two QTL on 4BL and 7BL. The 1DS QTL from CDC Hughes, the 2DS from BW961, the 4AL from the AAC Prevail, AAC Concord, and Lillian, and the 7AL from AAC Concord and Lillian conferred seedling leaf rust resistance. The QTL on 4AL corresponded with Lr30 and was the same across cultivars AAC Prevail, AAC Concord, and Lillian, whereas the 7AL corresponding with LrCen was coincident between AAC Concord and Lillian. The 7DS and 2DS QTL in BW961 corresponded with Lr34 and Lr2a, respectively, and the 1DS QTL in CDC Hughes with Lr21. The QTL identified on 5AL could represent a novel gene. The results of this study will widen our knowledge of leaf rust resistance genes in Canadian wheat and their utilization in resistance breeding

    Locomotor changes in length and EMG activity of feline medial gastrocnemius muscle following paralysis of two synergists

    Get PDF
    The mechanism of the compensatory increase in electromyographic activity (EMG) of a cat ankle extensor during walking shortly after paralysis of its synergists is not fully understood. It is possible that due to greater ankle flexion in stance in this situation, muscle spindles are stretched to a greater extent and, thus, contribute to the EMG enhancement. However, also changes in force feedback and central drive may play a role. The aim of the present study was to investigate the short-term (1- to 2-week post-op) effects of lateral gastrocnemius (LG) and soleus (SO) denervation on muscle fascicle and muscle–tendon unit (MTU) length changes, as well as EMG activity of the intact medial gastrocnemius (MG) muscle in stance during overground walking on level (0%), downslope (−50%, presumably enhancing stretch of ankle extensors in stance) and upslope (+50%, enhancing load on ankle extensors) surfaces. Fascicle length was measured directly using sonomicrometry, and MTU length was calculated from joint kinematics. For each slope condition, LG-SO denervation resulted in an increase in MTU stretch and peak stretch velocity of the intact MG in early stance. MG muscle fascicle stretch and peak stretch velocity were also higher than before denervation in downslope walking. Denervation significantly decreased the magnitude of MG fascicle shortening and peak shortening velocity during early stance in level and upslope walking. MG EMG magnitude in the swing and stance phases was substantially greater after denervation, with a relatively greater increase during stance of level and upslope walking. These results suggest that the fascicle length patterns of MG muscle are significantly altered when two of its synergists are in a state of paralysis. Further, the compensatory increase in MG EMG is likely mediated by enhanced MG length feedback during downslope walking, enhanced feedback from load-sensitive receptors during upslope walking and enhanced central drive in all walking conditions

    Stakeholder Perspectives on In-home Passive Remote Monitoring to Support Aging in Place in the Province of New Brunswick, Canada: Rapid Qualitative Investigation

    No full text
    BackgroundThe province of New Brunswick (NB) has one of the oldest populations in Canada, providing an opportunity to develop and test innovative strategies to address the unique health challenges faced by older adults. Passive remote monitoring technology has the potential to support independent living among older adults. Limited research has examined the benefits of and barriers to the adoption of this technology among community-dwelling older adults. ObjectiveThis study aimed to explore perceptions of in-home passive remote monitoring technology designed to support aging in place from the perspective of older adults, their family or friend caregivers, social workers, and government decision-makers in the province of NB, Canada. MethodsBetween October 2018 and March 2020, a rapid qualitative investigation of 28 one-on-one interviews was conducted in person or via telephone. Participants included 2 home support services clients and 11 family or friend caregivers who had used passive remote monitoring technology in their homes; 8 social workers who had worked as case managers for home support services clients; and 7 individuals who were key government decision-makers in the adoption, policy development, and use of the technology in the province of NB. The interviews focused on the following topics: decision to adopt the passive remote monitoring system, barriers to adopting the passive remote monitoring system, benefits of the passive remote monitoring system, impact on client health outcomes, and privacy concerns. The interviews were audio recorded, transcribed, and analyzed by a team of 6 researchers. Data analysis was conducted using a rapid assessment process approach that included matrix analysis. ResultsParticipants reported that the use of the remote monitoring system allowed older adults to live at home longer and provided caregiver relief. Stakeholders were invested in meeting the home support (home care) needs of older adults. However, when it came to the use of remote monitoring, there was a lack of consensus about which clients it was well-suited for and the role that social workers should play in informing clients and caregivers about the service (role ambiguity, gatekeeping, and perceived conflicts of interest). ConclusionsOur findings highlight many benefits and challenges of the adoption of passive remote monitoring for clients, their family or friend caregivers, and public provincial health and social services systems. Passive remote monitoring is a valuable tool that can provide support to older adults and their family or friend caregivers when it is a good fit with client needs. Further work is needed in NB to increase public and social workers’ awareness of the service and its benefits

    Use of digital technologies for public health surveillance during the COVID-19 pandemic: A scoping review

    No full text
    Throughout the COVID-19 pandemic, a variety of digital technologies have been leveraged for public health surveillance worldwide. However, concerns remain around the rapid development and deployment of digital technologies, how these technologies have been used, and their efficacy in supporting public health goals. Following the five-stage scoping review framework, we conducted a scoping review of the peer-reviewed and grey literature to identify the types and nature of digital technologies used for surveillance during the COVID-19 pandemic and the success of these measures. We conducted a search of the peer-reviewed and grey literature published between 1 December 2019 and 31 December 2020 to provide a snapshot of questions, concerns, discussions, and findings emerging at this pivotal time. A total of 147 peer-reviewed and 79 grey literature publications reporting on digital technology use for surveillance across 90 countries and regions were retained for analysis. The most frequently used technologies included mobile phone devices and applications, location tracking technologies, drones, temperature scanning technologies, and wearable devices. The utility of digital technologies for public health surveillance was impacted by factors including uptake of digital technologies across targeted populations, technological capacity and errors, scope, validity and accuracy of data, guiding legal frameworks, and infrastructure to support technology use. Our findings raise important questions around the value of digital surveillance for public health and how to ensure successful use of technologies while mitigating potential harms not only in the context of the COVID-19 pandemic, but also during other infectious disease outbreaks, epidemics, and pandemics

    Table_2_Genetic mapping of leaf rust (Puccinia triticina Eriks) resistance genes in six Canadian spring wheat cultivars.xlsx

    No full text
    The Canada Western Red Spring wheat (Triticum aestivum L.) cultivars AAC Concord, AAC Prevail, CDC Hughes, Lillian, Glenlea, and elite line BW961 express a spectrum of resistance to leaf rust caused by Puccinia triticina Eriks. This study aimed to identify and map the leaf rust resistance of the cultivars using three doubled haploid populations, AAC Prevail/BW961 (PB), CDC Hughes/AAC Concord (HC), and Lillian/Glenlea (LG). The populations were evaluated for seedling resistance in the greenhouse and adult plant disease response in the field at Morden, MB for 3 years and genotyped with the 90K wheat Infinium iSelect SNP array. Genetic maps were constructed to perform QTL analysis on the seedling and field leaf rust data. A total of three field leaf rust resistance QTL segregated in the PB population, five in the HC, and six in the LG population. In the PB population, BW961 contributed two QTL on chromosomes 2DS and 7DS, and AAC Prevail contributed a QTL on 4AL consistent across trials. Of the five QTL in HC, AAC Concord contributed two QTL on 4AL and 7AL consistent across trials and a QTL on 3DL.1 that provided seedling resistance only. CDC Hughes contributed two QTL on 1DS and 3DL.2. Lillian contributed four QTL significant in at least two of the three trials on 2BS, 4AL, 5AL, and 7AL, and Glenlea two QTL on 4BL and 7BL. The 1DS QTL from CDC Hughes, the 2DS from BW961, the 4AL from the AAC Prevail, AAC Concord, and Lillian, and the 7AL from AAC Concord and Lillian conferred seedling leaf rust resistance. The QTL on 4AL corresponded with Lr30 and was the same across cultivars AAC Prevail, AAC Concord, and Lillian, whereas the 7AL corresponding with LrCen was coincident between AAC Concord and Lillian. The 7DS and 2DS QTL in BW961 corresponded with Lr34 and Lr2a, respectively, and the 1DS QTL in CDC Hughes with Lr21. The QTL identified on 5AL could represent a novel gene. The results of this study will widen our knowledge of leaf rust resistance genes in Canadian wheat and their utilization in resistance breeding.</p

    Table_1_Genetic mapping of leaf rust (Puccinia triticina Eriks) resistance genes in six Canadian spring wheat cultivars.docx

    No full text
    The Canada Western Red Spring wheat (Triticum aestivum L.) cultivars AAC Concord, AAC Prevail, CDC Hughes, Lillian, Glenlea, and elite line BW961 express a spectrum of resistance to leaf rust caused by Puccinia triticina Eriks. This study aimed to identify and map the leaf rust resistance of the cultivars using three doubled haploid populations, AAC Prevail/BW961 (PB), CDC Hughes/AAC Concord (HC), and Lillian/Glenlea (LG). The populations were evaluated for seedling resistance in the greenhouse and adult plant disease response in the field at Morden, MB for 3 years and genotyped with the 90K wheat Infinium iSelect SNP array. Genetic maps were constructed to perform QTL analysis on the seedling and field leaf rust data. A total of three field leaf rust resistance QTL segregated in the PB population, five in the HC, and six in the LG population. In the PB population, BW961 contributed two QTL on chromosomes 2DS and 7DS, and AAC Prevail contributed a QTL on 4AL consistent across trials. Of the five QTL in HC, AAC Concord contributed two QTL on 4AL and 7AL consistent across trials and a QTL on 3DL.1 that provided seedling resistance only. CDC Hughes contributed two QTL on 1DS and 3DL.2. Lillian contributed four QTL significant in at least two of the three trials on 2BS, 4AL, 5AL, and 7AL, and Glenlea two QTL on 4BL and 7BL. The 1DS QTL from CDC Hughes, the 2DS from BW961, the 4AL from the AAC Prevail, AAC Concord, and Lillian, and the 7AL from AAC Concord and Lillian conferred seedling leaf rust resistance. The QTL on 4AL corresponded with Lr30 and was the same across cultivars AAC Prevail, AAC Concord, and Lillian, whereas the 7AL corresponding with LrCen was coincident between AAC Concord and Lillian. The 7DS and 2DS QTL in BW961 corresponded with Lr34 and Lr2a, respectively, and the 1DS QTL in CDC Hughes with Lr21. The QTL identified on 5AL could represent a novel gene. The results of this study will widen our knowledge of leaf rust resistance genes in Canadian wheat and their utilization in resistance breeding.</p

    Mapping quantitative trait loci associated with leaf rust resistance in five spring wheat populations using single nucleotide polymorphism markers

    No full text
    Growing resistant wheat (Triticum aestivum L) varieties is an important strategy for the control of leaf rust, caused by Puccinia triticina Eriks. This study sought to identify the chromosomal location and effects of leaf rust resistance loci in five Canadian spring wheat cultivars. The parents and doubled haploid lines of crosses Carberry/AC Cadillac, Carberry/Vesper, Vesper/Lillian, Vesper/Stettler and Stettler/Red Fife were assessed for leaf rust severity and infection response in field nurseries in Canada near Swift Current, SK from 2013 to 2015, Morden, MB from 2015 to 2017 and Brandon, MB in 2016, and in New Zealand near Lincoln in 2014. The populations were genotyped with the 90K Infinium iSelect assay and quantitative trait loci (QTL) analysis was performed. A high density consensus map generated based on 14 doubled haploid populations and integrating SNP and SSR markers was used to compare QTL identified in different populations. AC Cadillac contributed QTL on chromosomes 2A, 3B and 7B (2 loci), Carberry on 1A, 2B (2 loci), 2D, 4B (2 loci), 5A, 6A, 7A and 7D, Lillian on 4A and 7D, Stettler on 2D and 6B, Vesper on 1B, 1D, 2A, 6B and 7B (2 loci), and Red Fife on 7A and 7B. Lillian contributed to a novel locus QLr.spa-4A, and similarly Carberry at QLr.spa-5A. The discovery of novel leaf rust resistance QTL QLr.spa-4A and QLr.spa-5A, and several others in contemporary Canada Western Red Spring wheat varieties is a tremendous addition to our present knowledge of resistance gene deployment in breeding. Carberry demonstrated substantial stacking of genes which could be supplemented with the genes identified in other cultivars with the expectation of increasing efficacy of resistance to leaf rust and longevity with little risk of linkage drag.This article is published as Bokore FE, Knox RE, Cuthbert RD, Pozniak CJ, McCallum BD, N’Diaye A, et al. (2020) Mapping quantitative trait loci associated with leaf rust resistance in five spring wheat populations using single nucleotide polymorphism markers. PLoS ONE 15(4): e0230855. doi: 10.1371/journal.pone.0230855.</p
    corecore