153 research outputs found

    Ground-state statistics from annealing algorithms: quantum versus classical approaches

    Get PDF
    We study the performance of quantum annealing for systems with ground-state degeneracy by directly solving the Schrödinger equation for small systems and quantum Monte Carlo simulations for larger systems. The results indicate that naive quantum annealing using a transverse field may not be well suited to identify all degenerate ground-state configurations, although the value of the ground-state energy is often efficiently estimated. An introduction of quantum transitions to all states with equal weights is shown to greatly improve the situation, but with a sacrifice in annealing time. We also clarify the relation between the spin configurations in degenerate ground states and the probabilities that those states are obtained by quantum annealing. The strengths and weaknesses of quantum annealing for problems with degenerate ground states are discussed in comparison with classical simulated annealing.ISSN:1367-263

    Ensemble Inequivalence in the Ferromagnetic p-spin Model in Random Fields

    Full text link
    We study the effect that randomness has on long-range interacting systems by using the ferromagnetic Ising model with pp-body interactions in random fields. The case with p=2 yields a phase diagram similar to that of previously studied models and shows known features that inequivalence of the canonical and microcanonical ensembles brings with it, for example negative specific heat in a narrow region of the phase diagram. When p>2, however, the canonical phase diagram is completely different from the microcanonical one. The temperature does not necessarily determine the microcanonical phases uniquely, and thus the ferromagnetic and paramagnetic phases are not separated in such a region of a conventional phase diagram drawn with the temperature and field strength as the axes. Below a certain value of the external field strength, part of the ferromagnetic phase has negative specific heat. For large values of the external field strength the ergodicity is broken before the phase transition occurs for p>2. Moreover, for p>2, the Maxwell construction cannot be derived in a consistent manner and therefore, in contrast to previous cases with negative specific heat, the Maxwell construction does not bridge the gap between the ensembles

    Distribution of partition function zeros of the ±J\pm J model on the Bethe lattice

    Full text link
    The distribution of partition function zeros is studied for the ±J\pm J model of spin glasses on the Bethe lattice. We find a relation between the distribution of complex cavity fields and the density of zeros, which enables us to obtain the density of zeros for the infinite system size by using the cavity method. The phase boundaries thus derived from the location of the zeros are consistent with the results of direct analytical calculations. This is the first example in which the spin glass transition is related to the distribution of zeros directly in the thermodynamical limit. We clarify how the spin glass transition is characterized by the zeros of the partition function. It is also shown that in the spin glass phase a continuous distribution of singularities touches the axes of real field and temperature.Comment: 23 pages, 12 figure

    Accurate determination of the absolute 3He/4He ratio of a synthesized helium standard gas (Helium Standard of Japan, HESJ): Towards revision of the atmospheric 3He/4He ratio

    Full text link
    The helium standard of Japan, referred to as HESJ, is an inter-laboratory standard for the 3He/4He ratio. While the ratio of 3He and 4He of the HESJ was previously determined by a relative comparison to atmospheric helium, the absolute value of the 3He/4He ratio of the HESJ has not been directly determined yet. Therefore, it relies on the early measurements of that of atmospheric helium. The accuracy of the absolute 3He/4He ratios of the atmosphere and other working standards including HESJ is crucial in some applications of helium isotopes, such as tritium-3He dating, surface-exposure age determination based on cosmogenic 3He, and the accurate measurement of the neutron lifetime. In this work, new control samples of helium gases with 3He/4He ratios of 14, 28, and 42 ppm were fabricated with accuracy of 0.25-0.38% using a gas-handling system for a neutron lifetime experiment at Japan Proton Accelerator Research Complex (J-PARC). The relative 3He/4He ratios of these samples and the HESJ were measured using a magnetic-sector-type, single-focusing, noble gas mass spectrometer with a double collector system. As a result, the absolute 3He/4He ratio of the HESJ was determined as 27.36 +/- 0.11 ppm. The atmospheric 3He/4He ratio was determined as 1.340 +/- 0.006 ppm, based on this work.Comment: 18 pages, 8 figures, 4 table

    Recombinant human FGF-2 for the treatment of early-stage osteonecrosis of the femoral head: TRION, a single-arm, multicenter, Phase II trial

    Get PDF
    Aim: This study aimed to evaluate the 2-year outcomes from a clinical trial of recombinant human FGF-2 (rhFGF-2) for osteonecrosis of the femoral head (ONFH). Patients & methods: Sixty-four patients with nontraumatic, precollapse and large ONFHs were percutaneously administered with 800 μg rhFGF-2 contained in gelatin hydrogel. Setting the end point of radiological collapse, we analyzed the joint preservation period of the historical control. Changes in two validated clinical scores, bone regeneration and safety were evaluated. Results: Radiological joint preservation time was significantly higher in the rhFGF-2 group than in the control group. The ONFHs tended to improve to smaller ONFHs. The postoperative clinical scores significantly improved. Thirteen serious adverse events showed recovery. Conclusion: rhFGF-2 treatment increases joint preservation time with clinical efficacy, radiological bone regeneration and safety

    Mast Cell Infiltration is Associated with Myelofibrosis and Angiogenesis in Myelodysplastic Syndromes

    Get PDF
    Myelodysplastic syndromes are a heterogeneous group of clonal hematopoietic stem cell disorders characterized by persistent peripheral cytopenia with morphological and functional abnormalities of hematopoietic cells. Mast cells infiltrate into or around tumor tissues and play a role in remodeling of the stromal microenvironment, contributing to tumor progression. Increased mast cell numbers are associated with fibrosis, angiogenesis and a poor prognosis in human carcinomas. The aim of this study was to determine whether mast cell infiltration contributes to myelofibrosis or angiogenesis in myelodysplastic syndromes. We evaluated the correlation between mast cell density and the extent of myelofibrosis and angiogenesis in myelodysplastic syndromes. Fifty bone marrow biopsies taken from patients with a diagnosis of myelodysplastic syndromes were examined. Grading of myelofibrosis was evaluated by silver impregnation staining. Mast cell density and microvessel density were evaluated by immunohistochemistry. Human mast cells have been divided into two phenotypes. We designated a tryptase-positive mast cell as MCT and a chymase-positive mast cell as MCTC. Microvessels were identified by CD34-positive endothelial cells. Microvessel density and the extent of myelofibrosis were significantly greater in patients with high MCT and MCTC density compared to those with low MC density. Based on this, we suggest that the presence of high mast cell numbers is associated with myelofibrosis and angiogenesis in myelodysplastic syndromes
    corecore