72 research outputs found

    Persistent organic pollutants (POPs), polycyclic aromatic hydrocarbons (PAHs), and plastics : examples of the status, trend, and cycling of organic chemicals of environmental concern in the ocean

    Get PDF
    Author Posting. © The Oceanography Society, 2014. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 27, no. 1 (2014): 196–213, doi:10.5670/oceanog.2014.23.Four decades of research have provided a reasonable understanding of the outline of the biogeochemical cycles of persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs) in coastal ocean and surface ocean ecosystems, including atmospheric transport to the sea, air-sea exchange processes, and the role of particulate matter in removing these chemicals from surface waters. It is clear that deep ocean fish are contaminated with POPs. However, despite available sampling and analytical capabilities, deep ocean ecosystems are much less sampled and understood. A multidecade assessment of POPs and PAHs in US coastal waters using bivalve sentinel organisms documents high concentrations near urban areas and also some stations where concentrations have begun to decline. The results are consistent with coastal sediments near urban areas being a leaky sink for POPs and PAHs, and sources from land continuing to contribute these contaminants to the sea. Other studies document coastal and continental margin surface sediments as a sink, albeit a potentially leaky sink, for POPs and PAHs. Floating plastic debris, including small pellets, has reemerged as an oceanic environmental concern. A "Pellet Watch" assessing plastic pellets and associated POPs and PAHs is underway. Enhanced studies of deep-ocean ecosystems are recommended. The findings are also relevant to biogeochemical cycles for emerging organic pollutants

    Polycyclic aromatic hydrocarbon (PAHs) and hopanes in stranded tar-balls on the coasts of Peninsular Malaysia: applications of biomarkers for identifying sources of oil pollution

    Get PDF
    Malaysian coasts are subjected to various threats of petroleum pollution including routine and accidental oil spill from tankers, spillage of crude oils from inland and offshore oil fields, and run-off from land-based human activities. Due to its strategic location, the Straits of Malacca serves as a major shipping lane. This paper expands the utility of biomarker compounds, hopanes, in identifying the source of tar-balls stranded on Malaysian coasts. 20 tar-ball samples collected from the east and west coast were analyzed for hopanes and polycyclic aromatic hydrocarbons (PAHs). Four of the 13 tar-ball samples collected from the west coast of Peninsular Malaysia were identified as the Middle East crude oil (MECO) based on their biomarker signatures, suggesting tanker-derived sources significantly contributing the petroleum pollution in the Straits of Malacca. The tar-balls found on the east coast seem to originate from the offshore oil platforms in the South China Sea. The presence of South East Asian crude oil (SEACO) tar-balls on the west coast carry several plausible explanations. Some of the tar-balls could have been transported via sea currents from the east coast. The tankers carrying SEACO to other countries could have accidentally spilt the oil as well. Furthermore, discharge of tank washings and ballast water from the tankers were suggested based on the abundance in higher molecular weight n-alkanes and the absence of unresolved complex mixture (UCM) in the tar-ball samples. The other possibilities are that the tar-balls may have been originated from the Sumatran oil fields and spillage of domestic oil from oil refineries in Port Dickson and Malacca. The results of PAHs analysis suggest that all the tar-ball samples have undergone various extent of weathering through evaporation, dissolution and photo-oxidation

    Historical occurrences of polybrominated diphenyl ethers and polychlorinated biphenyls in Manila Bay, Philippines, and in the upper Gulf of Thailand

    Get PDF
    Historical trends of the accumulation of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in a typical tropical Asian environment were investigated using radio-dated sediment cores from Manila Bay, the Philippines and from the upper Gulf of Thailand. Vertical profiles indicated earlier usage of PCBs than of PBDEs which coincided with their industrial production. The increasing concentrations of total PBDEs and PCBs toward the surface suggested an increased consumption of PBDEs; and possible leakage of PCBs from old machineries into the aquatic environment in recent years. Current input of PCBs to the catchment of Manila Bay was supported by the analyses of air samples and plastic resin pellets. The vertical profiles of total PBDEs in the cores (i.e., rapidly increasing concentrations corresponding to the mid-1980s until mid-1990s, followed by a decrease until the early 2000s, and increasing again toward the surface) likely corresponded to the rapid economic growth in Asia in the 1990s, the Asian financial crisis in 1997, and the economic recovery since early 2000s. BDE-209 was predominant especially on the surface layers. BDEs 47 and 99 generally decreased toward the surface, reflecting the phase-out of the technical penta-PBDE products and the regulation by the Stockholm Convention in recent years. Increasing ratios of BDE-202/209, 206/209, 207/209 and decreasing % of BDE-209 down the core layers may provide evidence for the anaerobic debromination of BDE-209 in the sediment cores. Inventories in ng/cm2 of total PCBs were higher than total PBDEs (92 vs. 34 and 47 vs. 11 in the Philippines; 47 vs. 33 in Thailand). However, the doubling times indicated faster accumulation of total PBDEs (6–7 years) and BDE-209 (6–7.5 years) than of PCBs (8–11 years). Furthermore, the temporal increase in BDE-209 was comparable to or faster than those reported in other water bodies around the world

    Source identification of Malaysian atmospheric polycyclic aromatic hydrocarbons nearby forest fires using molecular and isotopic compositions

    Get PDF
    We report measurements of molecular and carbon isotopic compositions of Malaysian atmospheric polycyclic aromatic hydrocarbons (PAHs) in smoke haze from the 1997 Indonesian forest fire. Comparison of the carbon isotopic compositions (δ13C) of individual PAHs from the smoke haze, with those from other PAHs sources (soot collected from gasoline and diesel vehicle muffler, woodburning smoke), enables us to discriminate among the diverse sources of atmospheric PAHs. Soot PAHs extracted from gasoline and diesel vehicles show heavy isotopic signatures with a large inter-species δ13C variation from −12.9‰ to −26.6‰, compared to soot PAHs extracted from woodburning smoke which are isotopically light, and have a small inter-species δ13C variation from −26.8‰ to −31.6‰. Values from −17.7‰ to −27.9‰ were obtained for the corresponding PAHs extracted from the smoke haze, indicating that they are derived mainly from automotive exhaust. Molecular and isotopic compositions of PAHs extracted from smoke haze were similar to those extracted from non-haze aerosol. Quantitative estimation shows that woodburning contribution to Malaysian atmospheric PAHs ranges from 25% to 35% with no relation to haze intensity, while automotive contribution ranges from 65% to 75%. These results suggest that the major contributor of PAHs in Malaysian air is automotive exhaust whether smoke haze is observed or not

    Distribution of polycyclic aromatic hydrocarbons (PAHs) in rivers and estuaries in Malaysia: a widespread input of petrogenic PAHs

    Get PDF
    This is the first publication on the distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in riverine and coastal sediments in South East Asia where the rapid transfer of land-based pollutants into aquatic environments by heavy rainfall and runoff waters is of great concern. Twenty-nine Malaysian riverine and coastal sediments were analyzed for PAHs (3−7 rings) by gas chromatography mass spectrometry. Total PAHs concentra tions in the sediment ranged from 4 to 924 ng/g. Alkylated homologues were abundant for all sediment samples. The ratio of the sum of methylphenanthrenes to phenanthrene (MP/P), an index of petrogenic PAHs contribution, was more than unity for 26 sediment samples and more than 3 for seven samples for urban rivers covering a broad range of locations. The MP/P ratio showed a strong correlation with the total PAHs concentrations, with an r2 value of 0.74. This ratio and all other compositional features indicated that Malaysian urban sediments are heavily impacted by petrogenic PAHs. This finding is in contrast to other studies reported in many industrialized countries where PAHs are mostly of pyrogenic origin. The MP/P ratio was also significantly correlated with higher molecular weight PAHs such as benzo[a]pyrene, suggesting unique PAHs source in Malaysia which contains both petrogenic PAHs and pyrogenic PAHs. PAHs and hopanes fingerprints indicated that used crankcase oil is one of the major contributors of the sedimentary PAHs. Two major routes of inputs to aquatic environments have been identified:  (1) spillage and dumping of waste crankcase oil and (2) leakage of crankcase oils from vehicles onto road surfaces, with the subsequent washout by street runoff. N-Cyclohexyl-2-benzothiazolamine (NCBA), a molecular marker of street dust, was detected in the polluted sediments. NCBA and other biomarker profiles confirmed our hypothesis of the input from street dust contained the leaked crankcase oil. The fingerprints excluded crude oil, fresh lubricating oil, asphalt, and tire-particles as major contributors

    Sources of sedimentary PAHs in tropical Asian waters: differentiation between pyrogenic and petrogenic sources by alkyl homolog abundance

    Get PDF
    We collected surface sediment samples from 174 locations in India, Indonesia, Malaysia, Thailand, Vietnam, Cambodia, Laos, and the Philippines and analyzed them for polycyclic aromatic hydrocarbons (PAHs) and hopanes. PAHs were widely distributed in the sediments, with comparatively higher concentrations in urban areas (∑PAHs: ∼1000 to ∼100 000 ng/g-dry) than in rural areas (∼10 to ∼100 g-dry), indicating large sources of PAHs in urban areas. To distinguish petrogenic and pyrogenic sources of PAHs, we calculated the ratios of alkyl PAHs to parent PAHs: methylphenanthrenes to phenanthrene (MP/P), methylpyrenes + methylfluoranthenes to pyrene + fluoranthene (MPy/Py), and methylchrysenes + methylbenz[a]anthracenes to chrysene + benz[a]anthracene (MC/C). Analysis of source materials (crude oil, automobile exhaust, and coal and wood combustion products) gave thresholds of MP/P = 0.4, MPy/Py = 0.5, and MC/C = 1.0 for exclusive combustion origin. All the combustion product samples had the ratios of alkyl PAHs to parent PAHs below these threshold values. Contributions of petrogenic and pyrogenic sources to the sedimentary PAHs were uneven among the homologs: the phenanthrene series had a greater petrogenic contribution, whereas the chrysene series had a greater pyrogenic contribution. All the Indian sediments showed a strong pyrogenic signature with MP/P ≈ 0.5, MPy/Py ≈ 0.1, and MC/C ≈ 0.2, together with depletion of hopanes indicating intensive inputs of combustion products of coal and/or wood, probably due to the heavy dependence on these fuels as sources of energy. In contrast, sedimentary PAHs from all other tropical Asian cities were abundant in alkylated PAHs with MP/P ≈ 1–4, MPy/Py ≈ 0.3–1, and MC/C ≈ 0.2–1.0, suggesting a ubiquitous input of petrogenic PAHs. Petrogenic contributions to PAH homologs varied among the countries: largest in Malaysia whereas inferior in Laos. The higher abundance of alkylated PAHs together with constant hopane profiles suggests widespread inputs of automobile-derived petrogenic PAHs to Asian waters

    International Pellet Watch: global monitoring of persistent organic pollutants (POPs) in coastal waters. 1. Initial phase data on PCBs, DDTs, and HCHs

    Get PDF
    Samples of polyethylene pellets were collected at 30 beaches from 17 countries and analyzed for organochlorine compounds. PCB concentrations in the pellets were highest on US coasts, followed by western Europe and Japan, and were lower in tropical Asia, southern Africa and Australia. This spatial pattern reflected regional differences in the usage of PCBs and was positively correlated with data from Mussel Watch, another monitoring approach. DDTs showed high concentrations on the US west coast and in Vietnam. In Vietnam, DDT was predominant over its metabolites (DDE and DDD), suggesting the principal source may be current usage of the pesticide for malaria control. High concentrations of pesticide HCHs were detected in the pellets from southern Africa, suggesting current usage of the pesticides in southern Africa. This study demonstrates the utility and feasibility of the International Pellet Watch approach to monitor POPs at a global scale

    Ubiquitous occurrence of sulfonamides in tropical Asian waters.

    Get PDF
    Seven sulfonamides, trimethoprim, five macrolides, lincomycin and three tetracyclines were measured in 150 water samples of sewage, livestock and aquaculture wastewater, and river and coastal waters, in five tropical Asian countries. The sum of the concentrations of the target antibiotics in sewage and heavily sewage-impacted waters were at sub- to low-ppb levels. The most abundant antibiotic was sulfamethoxazole (SMX), followed by lincomycin and sulfathiazole. The average concentration of SMX in sewage or heavily sewage-impacted waters was 1720 ng/L in Vietnam (Hanoi, Ho Chi Minh, Can Tho; n = 15), 802 ng/L in the Philippines (Manila; n = 4), 538 ng/L in India (Kolkata; n = 4), 282 ng/L in Indonesia (Jakarta; n = 10), and 76 ng/L in Malaysia (Kuala Lumpur; n = 6). These concentrations were higher than those in Japan, China, Europe, the US and Canada. A predominance of sulfonamides, especially SMX, is notable in these tropical countries. The higher average concentrations, and the predominance of SMX, can be ascribed to the lower cost of the antibiotics. Both the concentration and composition of antibiotics in livestock and aquaculture wastewater varied widely. In many cases, sulfamethazine (SMT), oxytetracycline (OTC), lincomycin, and SMX were predominant in livestock and aquaculture wastewater. Both human and animal antibiotics were widely distributed in the respective receiving waters (i.e., the Mekong River and Manila Bay). SMT/SMX ratios indicate a significant contribution from livestock wastewater to the Mekong River and nearby canals, with an estimated ~ 10% of river water SMX derived from such wastewater. Mass flow calculations estimate that 12 tons of SMX is discharged annually from the Mekong River into the South China Sea. Riverine inputs of antibiotics may significantly increase the concentration of such antibiotics in the coastal waters

    Environmental Monitoring in South East Asia Using Molecular Markers

    Get PDF
    Abstracts of 3rd UNU-ORI joint international workshop for marine environment海洋環境国際ワークショップ講演要
    corecore