55 research outputs found

    The Downregulation of the Expression of CD147 by Tumor Suppressor REIC/Dkk-3, and Its Implication in Human Prostate Cancer Cell Growth Inhibition

    Get PDF
    The cluster of differentiation 147 (CD147), also known as EMMPRIN, is a key molecule that promotes cancer progression. We previously developed an adenoviral vector encoding a tumor suppressor REIC/Dkk-3 gene (Ad-REIC) for cancer gene therapy. The therapeutic effects are based on suppressing the growth of cancer cells, but, the underlying molecular mechanism has not been fully clarified. To elucidate this mechanism, we investigated the effects of Ad-REIC on the expression of CD147 in LNCaP prostate cancer cells. Western blotting revealed that the expression of CD147 was significantly suppressed by Ad-REIC. Ad-REIC also suppressed the cell growth of LNCaP cells. Since other researchers have demonstrated that phosphorylated mitogen-activated protein kinases (MAPKs) and c-Myc protein positively regulate the expression of CD147, we investigated the correlation between the CD147 level and the activation of MAPK and c-Myc expression. Unexpectedly, no positive correlation was observed between CD147 and its possible regulators, suggesting that another signaling pathway was involved in the downregulation of CD147. This is the first study to show the downregulation of CD147 by Ad-REIC in prostate cancer cells. At least some of the therapeutic effects of Ad-REIC may be due to the downregulation of the cancer-progression factor, CD147

    Transurethral resection for botryoid bladder rhabdomyosarcoma

    Get PDF
    The outcome of multimodal therapy for localized bladder rhabdomyosarcoma is quite good in terms of morbidity, and conservative surgery is generally recommended. However, in cases originating in the bladder neck, tumorectomy or partial cystectomy has adverse effects on bladder function. A 2-year-old girl underwent transurethral resection of a bladder tumor (TUR-BT), chemotherapy consisting of vincristine, actinomycin-D, and cyclophosphamide, and radiotherapy. She was in remission for 3 years when frequent urination became evident. Her bladder capacity and compliance were low; however, her urinary symptom was controlled using anticholinergic medication. Accordingly, TUR-BT could be an optional approach for bladder rhabdomyosarcoma

    Tumor suppressor REIC/Dkk-3 interacts with the dynein light chain, Tctex-1

    Get PDF
    Persistent hepatitis C virus (HCV) infection causes chronic liver diseases and is a global health problem. HuH-7 hepatoma-derived cells are widely used as the only cell-based HCV replication system for HCV research, including drug assays. Recently, using different hepatoma Li23-derived cells, we developed an HCV drug assay system (ORL8), in which the genome-length HCV RNA (O strain of genotype 1b) encoding renilla luciferase replicates efficiently. In this study, using the HuH-7-derived OR6 assay system that we developed previously and the ORL8 assay system, we evaluated 26 anti-HCV reagents, which other groups had reported as anti-HCV candidates using HuH-7-derived assay systems other than ORB. The results revealed that more than half of the reagents showed different anti-HCV activities from those in the previous studies, and that anti-HCV activities evaluated by the ORB and ORL8 assays were also frequently different. In further evaluation using the HuH-7-derived AH1R assay system, which was developed using the AH1 strain of genotype 1b, several reagents showed different anti-HCV activities in comparison with those evaluated by the OR6 and ORL8 assays. These results suggest that the different activities of anti-HCV reagents are caused by the differences in cell lines or HCV strains used for the development of assay systems. Therefore, we conclude that plural HCV assay systems developed using different cell lines or HCV strains are required for the objective evaluation of anti-HCV reagents

    Geothermal Linkage between a Hydrothermal Pond and a Deep Lake: Kuttara Volcano, Japan

    Get PDF
    Kuttara Volcano, Hokkaido, Japan, consists of temperate Lake Kuttara and the western Noboribetsu geothermal area. In order to explore geothermal relations between Lake Kuttara and the geothermal area, the heat budget of a hydrothermal pond, Okunoyu, was evaluated, and the heat storage change in the lower layer of Lake Kuttara was calculated by monitoring the water temperature at the deepest point. The lake water temperature consistently increased during the thermal stratification in June-November of 2013-2016. The heat flux Q(B) at lake bottom was then calculated at a range of 4.1-10.9 W/m(2), which is probably due to the leakage from a hydrothermal reservoir below the lake bottom. Meanwhile, the heat flux H-G(in) by geothermal groundwater input in Okunoyu was evaluated at 3.5-8.5 kW/m(2), which is rapidly supplied through faults from underlying hydrothermal reservoirs. With a time lag of 5 months to monthly mean Q(B) values in Lake Kuttara, the correlation with monthly mean H-G(in) in Okunoyu was significant (R-2 = 0.586; p < 0.01). Applying Darcy's law to the leakage from the hydrothermal reservoir at 260-310 m below the lake bottom, the time needed for groundwater's passage through the media 260-310 m thick was evaluated at 148-149 days (ca. 5 months). These findings suggest that the hydrothermal reservoir below lake bottom and the underlying hydrothermal reservoirs in the western geothermal area are both connected to a unique geothermal source in the deeper zone as a geothermal flow system of Kuttara Volcano

    溶存酸素による赤身魚肉の褐変抑制効果のシミュレーション

    No full text
    corecore