483 research outputs found

    Irrotational and Incompressible Ellipsoids in the First Post-Newtonian Approximation of General Relativity

    Get PDF
    First post-Newtonian (1PN) hydrostatic equations for an irrotational fluid which have been recently derived are solved for an incompressible star. The 1PN configurations are expressed as a deformation of the Newtonian irrotational Riemann ellipsoid using Lagrangian displacement vectors introduced by Chandrasekhar. For the 1PN solutions, we also calculate the luminosity of gravitational waves in the 1PN approximation using the Blanchet-Damour formalism. It is found that the solutions of the 1PN equations exhibit singularities at points where the axial ratios of semi-axes are 1:0.5244:0.6579 and 1:0.2374:0.2963, and the singularities seem to show that at the points, the irrotational Riemann ellipsoid is unstable to the deformation induced by the effect of general relativity. For stable cases (a_2/a_1 > 0.5244, where a_1 and a_2 are the semi-major and minor axes, respectively) we find that when increasing the 1PN correction, the angular velocity and total angular momentum increase, while the total energy and luminosity of gravitational waves decrease. These 1PN solutions will be useful when examining the accuracy of numerical code for obtaining relativistic irrotational stars. We also investigate the validity of an ellipsoidal approximation, in which a 1PN solution is obtained assuming an ellipsoidal figure and neglecting the deformation. It is found that for a2/a1>0.7a_2/a_1 > 0.7, the ellipsoidal approximation gives a fairly accurate result for the energy, angular momentum, and angular velocity, although in the approximation we cannot find the singularities.Comment: 33 pages with 3 figures, ptptex, corrected some typos, tables and figure

    Symbol Emergence in Robotics: A Survey

    Full text link
    Humans can learn the use of language through physical interaction with their environment and semiotic communication with other people. It is very important to obtain a computational understanding of how humans can form a symbol system and obtain semiotic skills through their autonomous mental development. Recently, many studies have been conducted on the construction of robotic systems and machine-learning methods that can learn the use of language through embodied multimodal interaction with their environment and other systems. Understanding human social interactions and developing a robot that can smoothly communicate with human users in the long term, requires an understanding of the dynamics of symbol systems and is crucially important. The embodied cognition and social interaction of participants gradually change a symbol system in a constructive manner. In this paper, we introduce a field of research called symbol emergence in robotics (SER). SER is a constructive approach towards an emergent symbol system. The emergent symbol system is socially self-organized through both semiotic communications and physical interactions with autonomous cognitive developmental agents, i.e., humans and developmental robots. Specifically, we describe some state-of-art research topics concerning SER, e.g., multimodal categorization, word discovery, and a double articulation analysis, that enable a robot to obtain words and their embodied meanings from raw sensory--motor information, including visual information, haptic information, auditory information, and acoustic speech signals, in a totally unsupervised manner. Finally, we suggest future directions of research in SER.Comment: submitted to Advanced Robotic

    Experimental study on active oxygen species to warm ischemic lung. - Availability of GSH, SOD, and alloprinol -

    Get PDF
    Ischemic-reperfusion injury caused by oxygen-drived free radicals is one of the great problems to be solved for successful lung transplantation and preservation. This study was performed to clarify the effect of the free radical scavenger, reduced glutathione (GSH), superoxide dismutase (SOD), and alloprinol for warm ischemic lung, and to elucidate changes of active oxygen species production in neutrophils. Sixty-three mongrel dogs underwent hilar stripping following left thoracotomy. The left pulmonary artery, pulmonary vein, and left main bronchus were clamped for 2-3 hours. To reduce the free-oxygen radicals, alloprinol (30mg/kg /day, for 3 days peros), GSH (50mg/kg, I. V.) administration and perfusion through the pulmonary. artery with 4℃ Euro-Collins\u27solution including GSH(1mg/l), SOD (15mg/ml), and alloprinol (20mg/l) were performed. At the time of right pulmonary artery occlusion test, the blood gas analysis of arterial blood and measurement of left pulmonary arterial pressure were done on the pre-ischemic period, immediately after and one hour after declamping. At the same time, active oxygen species production in neutrophils was evaluated using flow cytometric procedure. 1) The good pulmonary gas-changing function remained after ischemic period by administration and perfusion with free radical scavenger GSH, SOD, and alloprinol. 2) Changes of pulmonary arterial pressure at right pulmonary artery occulision test was not statistically significant. 3) Production of active oxynene species in neutrophils was increased after ischemic period. In conclusion, all of GSH, SOD, and alloprinol are effective in elminating ischemia- reperfusion injury to warm ischemic lung

    Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hydrolysis of cellulose requires the action of the cellulolytic enzymes endoglucanase, cellobiohydrolase and β-glucosidase. The expression ratios and synergetic effects of these enzymes significantly influence the extent and specific rate of cellulose degradation. In this study, using our previously developed method to optimize cellulase-expression levels in yeast, we constructed a diploid <it>Saccharomyces cerevisiae </it>strain optimized for expression of cellulolytic enzymes, and attempted to improve the cellulose-degradation activity and enable direct ethanol production from rice straw, one of the most abundant sources of lignocellulosic biomass.</p> <p>Results</p> <p>The engineered diploid strain, which contained multiple copies of three cellulase genes integrated into its genome, was precultured in molasses medium (381.4 mU/g wet cell), and displayed approximately six-fold higher phosphoric acid swollen cellulose (PASC) degradation activity than the parent haploid strain (63.5 mU/g wet cell). When used to ferment PASC, the diploid strain produced 7.6 g/l ethanol in 72 hours, with an ethanol yield that achieved 75% of the theoretical value, and also produced 7.5 g/l ethanol from pretreated rice straw in 72 hours.</p> <p>Conclusions</p> <p>We have developed diploid yeast strain optimized for expression of cellulolytic enzymes, which is capable of directly fermenting from cellulosic materials. Although this is a proof-of-concept study, it is to our knowledge, the first report of ethanol production from agricultural waste biomass using cellulolytic enzyme-expressing yeast without the addition of exogenous enzymes. Our results suggest that combining multigene expression optimization and diploidization in yeast is a promising approach for enhancing ethanol production from various types of lignocellulosic biomass.</p

    Cocktail δ-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The filamentous fungus <it>T. reesei </it>effectively degrades cellulose and is known to produce various cellulolytic enzymes such as β-glucosidase, endoglucanase, and cellobiohydrolase. The expression levels of each cellulase are controlled simultaneously, and their ratios and synergetic effects are important for effective cellulose degradation. However, in recombinant <it>Saccharomyces cerevisiae</it>, it is difficult to simultaneously control many different enzymes. To construct engineered yeast with efficient cellulose degradation, we developed a simple method to optimize cellulase expression levels, named cocktail δ-integration.</p> <p>Results</p> <p>In cocktail δ-integration, several kinds of cellulase expression cassettes are integrated into yeast chromosomes simultaneously in one step, and strains with high cellulolytic activity (i.e., expressing an optimum ratio of cellulases) are easily obtained. Although the total integrated gene copy numbers of cocktail δ-integrant strain was about half that of a conventional δ-integrant strain, the phosphoric acid swollen cellulose (PASC) degradation activity (64.9 mU/g-wet cell) was higher than that of a conventional strain (57.6 mU/g-wet cell). This suggests that optimization of the cellulase expression ratio improves PASC degradation activity more so than overexpression.</p> <p>Conclusions</p> <p>To our knowledge, this is the first report on the expression of cellulase genes by δ-integration and optimization of various foreign genes by δ-integration in yeast. This method should be very effective and easily applied for other multi-enzymatic systems using recombinant yeast.</p

    Human liver organoids generated with single donor-derived multiple cells rescue mice from acute liver failure

    Get PDF
    BackgroundAcute liver failure (ALF) is a life-threatening disease with a high mortality rate. However, there are limited treatments or devices available for ALF therapy. Here, we aimed to develop a new strategy for ALF treatment by transplanting functional liver organoids (LOs) generated from single donor-derived human induced pluripotent stem cell (hiPSC) endoderm, endothelial cells (ECs), and mesenchymal cells (MCs).MethodsFirst, we isolated ECs and MCs from a single donor umbilical cord (UC) through enzyme digestion and characterized the UC-ECs and UC-MCs by flow cytometry. Second, using a nonviral reprogramming method, we generated same donor-derived hiPSCs from the UC-ECs and investigated their hepatic differentiation abilities. Finally, we simultaneously plated EC-hiPSC endoderm, UC-ECs, and UC-MCs in a three-dimensional (3D) microwell culture system, and generated single donor cell-derived differentiated LOs for ALF mouse treatment.ResultsWe obtained ECs and MCs from a single donor UC with high purity, and these cells provided a multicellular microenvironment that promoted LO differentiation. hiPSCs from the same donor were generated from UC-ECs, and the resultant EC-hiPSCs could be differentiated efficiently into pure definitive endoderm and further into hepatic lineages. Simultaneous plating of EC-hiPSC endoderm, UC-ECs, and UC-MCs in the 3D microwell system generated single donor cell-derived LOs (SDC-LOs) that could be differentiated into functional LOs with enhanced hepatic capacity as compared to that of EC-hiPSC-derived hepatic-like cells. When these functional SDC-LOs were transplanted into the renal subcapsules of ALF mice, they rapidly assumed hepatic functions and improved the survival rate of ALF mice.ConclusionThese results demonstrate that functional LOs generated from single donor cells can improve the condition of ALF mice. Functional SDC-LO transplantation provides a promising novel approach for ALF therapy

    Clonal identification and characterization of self-renewing pluripotent stem cells in the developing liver

    Get PDF
    Using flow cytometry and single cell–based assays, we prospectively identified hepatic stem cells with multilineage differentiation potential and self-renewing capability. These cells could be clonally propagated in culture where they continuously produced hepatocytes and cholangiocytes as descendants while maintaining primitive stem cells. When cells that expanded in vitro were transplanted into recipient animals, they morphologically and functionally differentiated into hepatocytes and cholangiocytes with reconstitution of hepatocyte and bile duct structures. Furthermore, these cells differentiated into pancreatic ductal and acinar cells or intestinal epithelial cells when transplanted into pancreas or duodenal wall. These data indicate that self-renewing pluripotent stem cells persist in the developing mouse liver and that such cells can be induced to become cells of other organs of endodermal origin under appropriate microenvironment. Manipulation of hepatic stem cells may provide new insight into therapies for diseases of the digestive system
    corecore