44 research outputs found

    Draft Genome Sequence of a Clinical Isolate of Streptococcus mutans Strain HM

    Get PDF
    We report the draft genome sequence of Streptococcus mutans strain HM isolated from a 4-year-old girl with infective endocarditis. The genomics information will provide information on the genetic diversity and virulence potential of S. mutans strain HM

    Generation of medaka gene knockout models by target-selected mutagenesis

    Get PDF
    We have established a reverse genetics approach for the routine generation of medaka (Oryzias latipes) gene knockouts. A cryopreserved library of N-ethyl-N-nitrosourea (ENU) mutagenized fish was screened by high-throughput resequencing for induced point mutations. Nonsense and splice site mutations were retrieved for the Blm, Sirt1, Parkin and p53 genes and functional characterization of p53 mutants indicated a complete knockout of p53 function. The current cryopreserved resource is expected to contain knockouts for most medaka genes

    Gene expression profiling of loss of TET2 and/or JAK2V617F mutant hematopoietic stem cells from mouse models of myeloproliferative neoplasms

    Get PDF
    AbstractMyeloproliferative neoplasms (MPNs) are clinically characterized by the chronic overproduction of differentiated peripheral blood cells and the gradual expansion of malignant intramedullary/extramedullary hematopoiesis. In MPNs mutations in JAK2 MPL or CALR are detected mutually exclusive in more than 90% of cases [1,2]. Mutations in them lead to the abnormal activation of JAK/STAT signaling and the autonomous growth of differentiated cells therefore they are considered as “driver” gene mutations. In addition to the above driver gene mutations mutations in epigenetic regulators such as TET2 DNMT3A ASXL1 EZH2 or IDH1/2 are detected in about 5%–30% of cases respectively [3]. Mutations in TET2 DNMT3A EZH2 or IDH1/2 commonly confer the increased self-renewal capacity on normal hematopoietic stem cells (HSCs) but they do not lead to the autonomous growth of differentiated cells and only exhibit subtle clinical phenotypes [4,6–8,5]. It was unclear how mutations in such epigenetic regulators influenced abnormal HSCs with driver gene mutations how they influenced the disease phenotype or whether a single driver gene mutation was sufficient for the initiation of human MPNs. Therefore we focused on JAK2V617F and loss of TET2—the former as a representative of driver gene mutations and the latter as a representative of mutations in epigenetic regulators—and examined the influence of single or double mutations on HSCs (Lineage−Sca-1+c-Kit+ cells (LSKs)) by functional analyses and microarray whole-genome expression analyses [9]. Gene expression profiling showed that the HSC fingerprint genes [10] was statistically equally enriched in TET2-knockdown-LSKs but negatively enriched in JAK2V617F–LSKs compared to that in wild-type-LSKs. Double-mutant-LSKs showed the same tendency as JAK2V617F–LSKs in terms of their HSC fingerprint genes but the expression of individual genes differed between the two groups. Among 245 HSC fingerprint genes 100 were more highly expressed in double-mutant-LSKs than in JAK2V617F–LSKs. These altered gene expressions might partly explain the mechanisms of initiation and progression of MPNs which was observed in the functional analyses [9]. Here we describe gene expression profiles deposited at the Gene Expression Omnibus (GEO) under the accession number GSE62302 including experimental methods and quality control analyses

    Mice with Calr mutations homologous to human CALR mutations only exhibit mild thrombocytosis

    Get PDF
    Shide, K., Kameda, T., Kamiunten, A. et al. Mice with Calr mutations homologous to human CALR mutations only exhibit mild thrombocytosis. Blood Cancer J. 9, 42 (2019). https://doi.org/10.1038/s41408-019-0202-

    Single-Cell Analysis of the Multicellular Ecosystem in Viral Carcinogenesis by HTLV-1

    Get PDF
    成人T細胞白血病リンパ腫の多段階発がん分子メカニズムを解明 --難治性疾患の新規治療標的候補を複数同定--. 京都大学プレスリリース. 2021-09-07.Premalignant clonal expansion of human T-cell leukemia virus type-1 (HTLV-1)–infected cells occurs before viral carcinogenesis. Here we characterize premalignant cells and the multicellular ecosystem in HTLV-1 infection with and without adult T-cell leukemia/lymphoma (ATL) by genome sequencing and single-cell simultaneous transcriptome and T/B-cell receptor sequencing with surface protein analysis. We distinguish malignant phenotypes caused by HTLV-1 infection and leukemogenesis and dissect clonal evolution of malignant cells with different clinical behavior. Within HTLV-1–infected cells, a regulatory T-cell phenotype associates with premalignant clonal expansion. We also delineate differences between virus- and tumor-related changes in the nonmalignant hematopoietic pool, including tumor-specific myeloid propagation. In a newly generated conditional knockout mouse model recapitulating T-cell–restricted CD274 (encoding PD-L1) gene lesions found in ATL, we demonstrate that PD-L1 overexpressed by T cells is transferred to surrounding cells, leading to their PD-L1 upregulation. Our findings provide insights into clonal evolution and immune landscape of multistep virus carcinogenesis

    Integrated genetic and clinical prognostic factors for aggressive adult T-cell leukemia/lymphoma

    Get PDF
    成人T細胞白血病リンパ腫(ATL)におけるゲノム情報と臨床情報を統合したリスクモデルを確立 --ATLの個別化医療を推進--. 京都大学プレスリリース. 2023-04-10.The prognosis of aggressive adult T-cell leukemia/lymphoma (ATL) is poor, and allogeneic hematopoietic stem-cell transplantation (allo-HSCT) is a curative treatment. To identify favorable prognostic patients after intensive chemotherapy, and who therefore might not require upfront allo-HSCT, we aimed to improve risk stratification of aggressive ATL patients aged <70 years. The clinical risk factors and genetic mutations were incorporated into risk modeling for overall survival (OS). We generated the m7-ATLPI, a clinicogenetic risk model for OS, that included the ATL prognostic index (PI) (ATL-PI) risk category, and non-silent mutations in seven genes, namely TP53, IRF4, RHOA, PRKCB, CARD11, CCR7, and GATA3. In the training cohort of 99 patients, the m7-ATLPI identified a low-, intermediate-, and high-risk group with 2-year OS of 100%, 43%, and 19%, respectively (hazard ratio [HR] 5.46, p < 0.0001). The m7-ATLPI achieved superior risk stratification compared to the current ATL-PI (C-index 0.92 vs. 0.85, respectively). In the validation cohort of 84 patients, the m7-ATLPI defined low-, intermediate-, and high-risk groups with a 2-year OS of 81%, 30%, and 0%, respectively (HR 2.33, p = 0.0094), and the model again outperformed the ATL-PI (C-index 0.72 vs. 0.70, respectively). The simplified m7-ATLPI, which is easier to use in clinical practice, achieved superior risk stratification compared to the ATL-PI, as did the original m7-ATLPI; the simplified version was calculated by summing the following: high-risk ATL-PI category (+10), low-risk ATL-PI category (−4), and non-silent mutations in TP53 (+4), IRF4 (+3), RHOA (+1), PRKCB (+1), CARD11 (+0.5), CCR7 (−2), and GATA3 (−3)

    Efficient Arrangement of the Replication Fork Trap for In Vitro Propagation of Monomeric Circular DNA in the Chromosome-Replication Cycle Reaction

    No full text
    Propagation of genetic information is a fundamental prerequisite for living cells. We recently developed the replication cycle reaction (RCR), an in vitro reaction for circular DNA propagation, by reconstitution of the replication cycle of the Escherichia coli chromosome. In RCR, two replication forks proceed bidirectionally from the replication origin, oriC, and meet at a region opposite oriC, yielding two copies of circular DNA. Although RCR essentially propagates supercoiled monomers, concatemer byproducts are also produced due to inefficient termination of the replication fork progression. Here, we examined the effect of the Tus-ter replication fork trap in RCR. Unexpectedly, when the fork traps were placed opposite oriC, mimicking their arrangement on the chromosome, the propagation of circular DNA was inhibited. On the other hand, fork traps flanking oriC allowed efficient propagation of circular DNA and repressed concatemer production. These findings suggest that collision of the two convergence forks through the fork trap is detrimental to repetition of the replication cycle. We further demonstrate that this detrimental effect was rescued by the UvrD helicase. These results provide insights into the way in which circular DNA monomers replicate repetitively without generating concatemers

    Resilience of native ant community against invasion of exotic ants after anthropogenic disturbances of forest habitats

    No full text
    Abstract The positive association between disturbances and biological invasions is a widely observed ecological pattern in the Anthropocene. Such patterns have been hypothesized to be driven by the superior competitive ability of invaders or by modified environments, as well as by the interaction of these factors. An experimental study that tests these hypotheses is usually less feasible, especially in protected nature areas. An alternative approach is to focus on community resilience over time after the anthropogenic disturbance of habitats. Here, we focused on ant communities within a forest to examine their responses after disturbance over time. We selected the Yanbaru region of northern Okinawa Island, which is a biodiversity hotspot in East Asia. We compared ant communities among roadside environments in forests where the road age differed from 5 to 25 years. We also monitored the ant communities before and after disturbance from forest thinning. We found that the species richness and abundance of exotic ants were higher in recently disturbed environments (roadsides of 5–15 years old roads), where the physical environment was warmer and drier. In contrast, the roadsides of 25‐year‐old roads indicated the potential recovery of the physical environment with cooler and moister conditions, likely owing to regrowth of roadside vegetation. At these sites, there were few exotic ants, except for those immediately adjacent to the road. The population density of the invasive species Technoymex brunneus substantially increased 1–2 years after forest thinning. There was no evidence of the exclusion of native ants by exotic ants that were recorded after disturbance. Our results suggest that local ant communities in the Yanbaru forests have some resilience to disturbance. We suggest that restoration of environmental components is a better strategy for maintaining native ant communities, rather than removing exotic ants after anthropogenic disturbance

    Eculizumab for Severe Thrombotic Microangiopathy Secondary to Surgical Invasive Stress and Bleeding

    Get PDF
    Atypical hemolytic uremic syndrome (aHUS) is an extremely rare condition caused by an excessive activation of the complement pathway based on genetic or acquired dysfunctions in complement regulation, leading to thrombotic microangiopathy (TMA). A complement-amplifying condition (CAC) can trigger aHUS occurrence along with complement abnormality. We herein report a case of severe TMA after laparoscopic myomectomy in a healthy woman. This case was eventually diagnosed as complement-mediated TMA secondary to surgical invasive stress as a CAC, with no definitive diagnosis of aHUS despite a genetic test. The patient fully recovered after several eculizumab administrations
    corecore