8,164 research outputs found

    1-1.4 Micron Spectral Atlas of Stars

    Get PDF
    We present a catalog of J-band (1.08 um to 1.35 um) stellar spectra at low resolution (R ~ 400). The targets consist of 105 stars ranging in spectral type from O9.5 to M7 and luminosity classes I through V. The relatively featureless spectra of hot stars, earlier than A4, can be used to remove the atmospheric features which dominate ground-based J-band spectroscopy. We measure equivalent widths for three absorption lines and nine blended features which we identify in the spectra. Using detailed comparison with higher resolution spectra, we demonstrate that low resolution data can be used for stellar classification, since several features depend on the effective temperature and gravity. For example The CN index (1.096 - 1.104 um) decreases with temperature, but the strength of a blended feature at 1.28 um (consisting of primarily P beta) increases. The slope of a star's spectrum can also be used to estimate its effective temperature. The luminosity class of a star correlates with the ratio of the Mg I (1.1831 um) line to a blend of several species at 1.16 um. Using these indicators, a star can be classified to within several subclasses. Fifteen stars with particularly high and low metal abundances are included in the catalog and some spectral dependence on metal abundance is also found.Comment: 35 pages, 10 figures (3a-e are in gif format. For complete high resolution figures, go to http://www.astro.ucla.edu/~malkan/newjspec/) ; Accepted for published in ApJS; For associated spectra files, see http://www.astro.ucla.edu/~malkan/newjspec

    Comment on The Evidence for a Pentaquark and Kinematic Reflections

    Full text link
    The Regge exchange model used by Dzierba et al. is shown to be questionable, since the pion pole term is not allowed. Hence the Regge amplitudes in their calculation are exaggerated. The amount of kinematic reflection in the mass spectrum of the (nK+) system, which is one decay channel of a possible pentaquark, is not well justified in the fitting procedure used by Dzierba et al., as shown by comparison with the (K+K-) invariant mass spectrum, which is one decay channel of the a_2 and f_2 tensor mesons. While kinematic reflections are still a concern in some papers that have presented evidence for the pentaquark, better quantitative calculations are needed to demonstrate the significance of this effect.Comment: Comment submitted to Phys. Rev. D (no figures

    Experimental Outlook for the Pentaquark

    Full text link
    A critical look is taken at both positive and null evidence for the Θ+\Theta^+ pentaquark. Potential problems with experiments will be discussed and the question of what conclusion can be drawn from both the positive and the null results is examined. First the question of existence of the Θ+\Theta^+ pentaquark is considered, followed by a discussion of new experiments that are either planned or in progress to answer questions about its mass, width and isospin. Finally, indirect evidence for the parity of the Θ+\Theta^+ is examined, and suggestions for experiments to measure its parity directly are given.Comment: MESON2004 conference proceedings, 10 pages, 1 figur

    The Keck/OSIRIS Nearby AGN Survey (KONA) I. The Nuclear K-band Properties of Nearby AGN

    Full text link
    We introduce the Keck Osiris Nearby AGN survey (KONA), a new adaptive optics-assisted integral-field spectroscopic survey of Seyfert galaxies. KONA permits at ~0.1" resolution a detailed study of the nuclear kinematic structure of gas and stars in a representative sample of 40 local bona fide active galactic nucleus (AGN). KONA seeks to characterize the physical processes responsible for the coevolution of supermassive black holes and galaxies, principally inflows and outflows. With these IFU data of the nuclear regions of 40 Seyfert galaxies, the KONA survey will be able to study, for the first time, a number of key topics with meaningful statistics. In this paper we study the nuclear K-band properties of nearby AGN. We find that the luminosities of the unresolved Seyfert 1 sources at 2.1 microns are correlated with the hard X-ray luminosities, implying that the majority of the emission is non-stellar. The best-fit correlation is logLK = 0.9logL2-10 keV + 4 over 3 orders of magnitude in both K-band and X-ray luminosities. We find no strong correlation between 2.1 microns luminosity and hard X-ray luminosity for the Seyfert 2 galaxies. The spatial extent and spectral slope of the Seyfert 2 galaxies indicate the presence of nuclear star formation and attenuating material (gas and dust), which in some cases is compact and in some galaxies extended. We detect coronal-line emission in 36 galaxies and for the first time in five galaxies. Finally, we find 4/20 galaxies that are optically classified as Seyfert 2 show broad emission lines in the near-IR, and one galaxy (NGC 7465) shows evidence of a double nucleus.Comment: Accepted for publication in ApJ, 19 pages with 18 figure

    A z=0.9 supercluster of X-ray luminous, optically-selected, massive galaxy clusters

    Full text link
    We report the discovery of a compact supercluster structure at z=0.9. The structure comprises three optically-selected clusters, all of which are detected in X-rays and spectroscopically confirmed to lie at the same redshift. The Chandra X-ray temperatures imply individual masses of ~5x10^14 Msun. The X-ray masses are consistent with those inferred from optical--X-ray scaling relations established at lower redshift. A strongly-lensed z~4 Lyman break galaxy behind one of the clusters allows a strong-lensing mass to be estimated for this cluster, which is in good agreement with the X-ray measurement. Optical spectroscopy of this cluster gives a dynamical mass in good agreement with the other independent mass estimates. The three components of the RCS2319+00 supercluster are separated from their nearest neighbor by a mere <3 Mpc in the plane of the sky and likely <10 Mpc along the line-of-sight, and we interpret this structure as the high-redshift antecedent of massive (~10^15 Msun) z~0.5 clusters such as MS0451.5-0305.Comment: ApJ Letters accepted. 5 pages in emulateapj, 3 figure

    Multiwavelength Mass Comparisons of the z~0.3 CNOC Cluster Sample

    Get PDF
    Results are presented from a detailed analysis of optical and X-ray observations of moderate-redshift galaxy clusters from the Canadian Network for Observational Cosmology (CNOC) subsample of the EMSS. The combination of extensive optical and deep X-ray observations of these clusters make them ideal candidates for multiwavelength mass comparison studies. X-ray surface brightness profiles of 14 clusters with 0.17<z<0.55 are constructed from Chandra observations and fit to single and double beta-models. Spatially resolved temperature analysis is performed, indicating that five of the clusters in this sample exhibit temperature gradients within their inner 60-200 kpc. Integrated spectra extracted within R_2500 provide temperature, abundance, and luminosity information. Under assumptions of hydrostatic equilibrium and spherical symmetry, we derive gas and total masses within R_2500 and R_200. We find an average gas mass fraction within R_200 of 0.136 +/- 0.004, resulting in Omega_m=0.28 +/- 0.01 (formal error). We also derive dynamical masses for these clusters to R_200. We find no systematic bias between X-ray and dynamical methods across the sample, with an average M(dyn)/M(X-ray) = 0.97 +/- 0.05. We also compare X-ray masses to weak lensing mass estimates of a subset of our sample, resulting in a weighted average of M(lens)/M(X-ray) of 0.99 +/- 0.07. We investigate X-ray scaling relationships and find powerlaw slopes which are slightly steeper than the predictions of self-similar models, with an E(z)^(-1) Lx-Tx slope of 2.4 +/- 0.2 and an E(z) M_2500-Tx slope of 1.7 +/- 0.1. Relationships between red-sequence optical richness (B_gc,red) and global cluster X-ray properties (Tx, Lx and M_2500) are also examined and fitted.Comment: Astrophysical Journal, 48 pages, 11 figures, LaTeX. Added correction to surface brightness normalization of MS1512.4+3647, corrections to sample gas mass fractions and calculated value of Omega_m. Figure resolution has been reduced to comply with astro-ph upload requirement

    Circumnuclear Gas in Seyfert 1 Galaxies: Morphology, Kinematics, and Direct Measurement of Black Hole Masses

    Full text link
    (Abridged) The two-dimensional distribution and kinematics of the molecular, ionized, and highly ionized gas in the nuclear regions of Seyfert 1 galaxies have been measured using high spatial resolution (~0''.09) near-infrared spectroscopy from NIRSPEC with adaptive optics on the Keck telescope. Molecular hydrogen, H2, is detected in all nine Seyfert 1 galaxies and, in the majority of galaxies, has a spatially resolved flux distribution. In contrast, the narrow component of the BrG emission has a distribution consistent with that of the K-band continuum. In general, the kinematics of H2 are consistent with thin disk rotation, with a velocity gradient of over 100 km/s measured across the central 0''.5 in three galaxies, and across the central 1''.5 in two galaxies. The kinematics of BrG are in agreement with the H2 rotation, except in all four cases the central 0''.5 is either blue- or redshifted by more than 75 km/s. The highly ionized gas, measured with the [Ca VIII] and [Si VII] coronal lines, is spatially and kinematically consistent with BrG in the central 0''.5. Dynamical models have been fitted to the two-dimensional H2 kinematics, taking into account the stellar mass distribution, the emission line flux distribution, and the point spread function. For NGC 3227 the modeling indicates a black hole mass of Mbh = 2.0{+1.0/-0.4} x 10^7 Msun, and for NGC 4151 Mbh = 3.0{+0.75/-2.2} x 10^7 Msun. In NGC 7469 the best fit model gives Mbh < 5.0 x 10^7 Msun. In all three galaxies, modeling suggests a near face-on disk inclination angle, which is consistent with the unification theory of active galaxies. The direct black hole mass estimates verify that masses determined from the technique of reverberation mapping are accurate to within a factor of three with no additional systematic errors.Comment: 43 pages, including 47 figures; Accepted for publication in ApJ. All 2-D maps (in high resolution) are available at http://www.astro.ucla.edu/~ehicks . Minor changes to the text and updated reverberation mapped black hole mass estimates; the conclusions are unchange

    The LWA1 Radio Telescope

    Full text link
    LWA1 is a new radio telescope operating in the frequency range 10-88 MHz, located in central New Mexico. The telescope consists of 258 pairs of dipole-type antennas whose outputs are individually digitized and formed into beams. Simultaneously, signals from all dipoles can be recorded using one of the instrument's "all dipoles" modes, facilitating all-sky imaging. Notable features of the instrument include high intrinsic sensitivity (about 6 kJy zenith system equivalent flux density), large instantaneous bandwidth (up to 78 MHz), and 4 independently-steerable beams utilizing digital "true time delay" beamforming. This paper summarizes the design of LWA1 and its performance as determined in commissioning experiments. We describe the method currently in use for array calibration, and report on measurements of sensitivity and beamwidth.Comment: 9 pages, 14 figures, accepted by IEEE Trans. Antennas & Propagation. Various minor changes from previous versio
    • 

    corecore