3,399 research outputs found

    Preliminary flight-determined subsonic lift and drag characteristics of the X-29A forward-swept-wing airplane

    Get PDF
    The X-29A subsonic lift and drag characteristics determined, met, or exceeded predictions, particularly with respect to the drag polar shapes. Induced drag levels were as great as 20 percent less than wind tunnel estimates, particularly at coefficients of lift above 0.8. Drag polar shape comparisons with other modern fighter aircraft showed the X-29A to have a better overall aircraft aerodynamic Oswald efficiency factor for the same aspect ratio. Two significant problems arose in the data reduction and analysis process. These included uncertainties in angle of attack upwash calibration and effects of maneuver dynamics on drag levels. The latter problem resulted from significantly improper control surface automatic camber control scheduling. Supersonic drag polar results were not obtained during this phase because of a lack of engine instrumentation to measure afterburner fuel flow

    Preliminary flight assessment of the X-29A advanced technology demonstrator

    Get PDF
    Several new technologies integrated on the X-29A advanced technology demonstrator are being evaluated for the next generation of fighter aircraft. Some of the most noteworthy ones are the forward-swept wing, digital fly-by-wire flight control system, close-coupled wing-canard configuration, aeroelastically tailored composite wing skins, three-surface pitch control configuration, and a highly unstable airframe. The expansion of the aircraft 1-g and maneuver flight envelopes was recently completed over a two-year period in 84 flights. Overall flight results confirmed the viability of the aircraft design, and good agreement with preflight predictions was obtained. The individual technologies' operational workability and performance were confirmed. This paper deals with the flight test results and the preliminary evaluation of the X-29A design and technologies. A summary of the primary technical findings in structural static loads, structural dynamic characteristics, flight control system characteristics, aerodynamic stability and control, and aerodynamic performance is presented

    Real-time flight test analysis and display techniques for the X-29A aircraft

    Get PDF
    The X-29A advanced technology demonstrator flight envelope expansion program and the subsequent flight research phase gave impetus to the development of several innovative real-time analysis and display techniques. These new techniques produced significant improvements in flight test productivity, flight research capabilities, and flight safety. These techniques include real-time measurement and display of in-flight structural loads, dynamic structural mode frequency and damping, flight control system dynamic stability and control response, aeroperformance drag polars, and aircraft specific excess power. Several of these analysis techniques also provided for direct comparisons of flight-measured results with analytical predictions. The aeroperformance technique was made possible by the concurrent development of a new simplified in-flight net thrust computation method. To achieve these levels of on-line flight test analysis, integration of ground and airborne systems was required. The capability of NASA Ames Research Center, Dryden Flight Research Facility's Western Aeronautical Test Range was a key factor in enabling implementation of these methods

    The Contractual Nature of Real Property Leases

    Get PDF

    The Integration of nearthreshold and subthreshold CMOS logic for energy minimization

    Get PDF
    With the rapid growth in the use of portable electronic devices, more emphasis has recently been placed on low-energy circuit design. Digital subthreshold complementary metal-oxide-semiconductor (CMOS) circuit design is one area of study that offers significant energy reduction by operating at a supply voltage substantially lower than the threshold voltage of the transistor. However, these energy savings come at a critical cost to performance, restricting its use to severely energy-constrained applications such as microsensor nodes. In an effort to mitigate this performance degradation in low-energy designs, nearthreshold circuit design has been proposed and implemented in digital circuits such as Intel\u27s energy-efficient hardware accelerator. The application spectrum of nearthreshold and subthreshold design could be broadened by integrating these cells into high-performance designs. This research focuses on the integration of characterized nearthreshold and subthreshold standard cells into high-performance functional modules. Within these functional modules, energy minimization is achieved while satisfying performance constraints by replacing non-critical path logic with nearthreshold and subthreshold logic cells. Specifically, the critical path method is used to bind the timing and energy constraints of the design. The design methodology was verified and tested with several benchmark circuits, including a cryptographic hash function, Skein. An average energy savings of 41.15% was observed at a circuit performance degradation factor of 10. The energy overhead of the level shifters accounted for at least 8.5% of the energy consumption of the optimized circuit, with an average energy overhead of 26.76%. A heuristic approach is developed for estimating the energy savings of the optimized design

    The Contractual Nature of Real Property Leases

    Get PDF

    The classical prosody heresy in Elizabethan poetic criticism.

    Get PDF

    Letter from Catherine Hicks & John Hicks to James B. Finley

    Get PDF
    Catherine and John Hicks have heard that Finley might be coming to Kansas to see his Indian friends, and they are delighted to hear it. Many years have passed since we first met in the wilderness of Sandusky and learned to sing praises to the Redeemer. It would mean a great deal to see Finley before they die. Abstract Number - 855https://digitalcommons.owu.edu/finley-letters/1342/thumbnail.jp
    • …
    corecore