32 research outputs found

    Impact abrasion resistance quantification of protective motorcycle gloves

    Full text link
    The hands are often the first contact point with the road surface in a motorcycle crash. Wearing well designed protective gloves has been proven to significantly reduce the occurrence and severity of injuries to the hand. The European Standard for motorcycle protective gloves requires testing of component materials separately and does not consider the impact of abrasive surfaces on seems. This work aimed to develop a new method of testing of fully constructed gloves as worn by a rider in impact abrasion situations. It used previously published fall mechanics to understand the areas that may undergo impact abrasion. It defines the important zones for abrasion resistance and details ideal impact/measurement geometry for measurement on a Cambridge type abrasion tester. It proposes a method for the impact abrasion resistance of the palm, knuckles, wrist, outer side of the little finger and the tops of fingers. This information may be used for the quantification of fully manufactured gloves for standard certification or use in a rating system

    Motorcycle clothing fabric burst failure during high speed impact with an abrasive surface

    Full text link
    High energy is involved when a rider impacts a road surface in a crash. Rider speed, height of fall and road surface morphology all contribute to the level of initial impact energy. Impact can cause fabrics and seams of protective garments to burst rendering their protective value void. The Cambridge abrasion tester tests protective clothing with a fall height of 50mm and abrasive belt speed of 28km/hr, far below what can happen in a “high side” motorcycle crash at 100km/hr. This work addresses the mechanics of what occurs in the first few microseconds of an impact and provides insight into the effect that speed has on fabric burst. This work used a Cambridge impact abrasion test to evaluate two different protective motorcycle clothing fabrics (a denim and brushed fleecy fabric over a p-aramid protective liner). It measured their abrasion resistance at an abrasion speed of 28km/hr and standard impact height. It used a high speed camera to measure the impact displacement of the test head. Fabrics with high stretch were more prone to burst failure on initial impact. Fabric burst is caused by a high speed tensile stress between the fabric coupled with the abrasion surface and the inertia of the body dragging against it. Stretch fabrics are pushed into the abrasion surface for a longer period by the body before the tensile stress occurs so the coupling force is higher. If the transition to abrasion occurs early in the impact then a fabric is less likely to burst

    Agricultural Management and Climatic Change Are the Major Drivers of Biodiversity Change in the UK

    Get PDF
    Action to reduce anthropogenic impact on the environment and species within it will be most effective when targeted towards activities that have the greatest impact on biodiversity. To do this effectively we need to better understand the relative importance of different activities and how they drive changes in species’ populations. Here, we present a novel, flexible framework that reviews evidence for the relative importance of these drivers of change and uses it to explain recent alterations in species’ populations. We review drivers of change across four hundred species sampled from a broad range of taxonomic groups in the UK. We found that species’ population change (~1970–2012) has been most strongly impacted by intensive management of agricultural land and by climatic change. The impact of the former was primarily deleterious, whereas the impact of climatic change to date has been more mixed. Findings were similar across the three major taxonomic groups assessed (insects, vascular plants and vertebrates). In general, the way a habitat was managed had a greater impact than changes in its extent, which accords with the relatively small changes in the areas occupied by different habitats during our study period, compared to substantial changes in habitat management. Of the drivers classified as conservation measures, low-intensity management of agricultural land and habitat creation had the greatest impact. Our framework could be used to assess the relative importance of drivers at a range of scales to better inform our policy and management decisions. Furthermore, by scoring the quality of evidence, this framework helps us identify research gaps and needs

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    Search for dark matter in association with a Higgs boson decaying to bb-quarks in pppp collisions at s=13\sqrt s=13 TeV with the ATLAS detector

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF
    corecore