42 research outputs found

    Using a sequence of earcons to monitor multiple simulated patients

    Get PDF
    Objective: The aim of this study was to determine whether a sequence of earcons can effectively convey the status of multiple processes, such as the status of multiple patients in a clinical setting. Background: Clinicians often monitor multiple patients. An auditory display that intermittently conveys the status of multiple patients may help. Method: Nonclinician participants listened to sequences of 500-ms earcons that each represented the heart rate (HR) and oxygen saturation (SpO2) levels of a different simulated patient. In each sequence, one, two, or three patients had an abnormal level of HR and/or SpO2. In Experiment 1, participants reported which of nine patients in a sequence were abnormal. In Experiment 2, participants identified the vital signs of one, two, or three abnormal patients in sequences of one, five, or nine patients, where the interstimulus interval (ISI) between earcons was 150 ms. Experiment 3 used the five-sequence condition of Experiment 2, but the ISI was either 150 ms or 800 ms. Results: Participants reported which patient(s) were abnormal with median 95% accuracy. Identification accuracy for vital signs decreased as the number of abnormal patients increased from one to three, p < .001, but accuracy was unaffected by number of patients in a sequence. Overall, identification accuracy was significantly higher with an ISI of 800 ms (89%) compared with an ISI of 150 ms (83%), p < .001. Conclusion: A multiple-patient display can be created by cycling through earcons that represent individual patients. Application: The principles underlying the multiple-patient display can be extended to other vital signs, designs, and domains

    Individual, social, and environmental correlates of healthy and unhealthy eating

    Full text link
    Few studies use comprehensive ecological approaches considering multilevel factors to understand correlates of healthy (and unhealthy) dietary intake. The aim of this study was to examine the association between individual, social, and environmental factors on composite measures of healthy and unhealthy dietary intake in adults

    Theoretical study of M+ RG2: (M+= Ca, Sr, Ba and Ra; RG= He–Rn)

    Get PDF
    Ab initio calculations were employed to investigate M+ RG2 species, where M+ = Ca, Sr, Ba and Ra and RG= He–Rn. Geometries have been optimized, and cuts through the potential energy surfaces containing each global minimum have been calculated at the MP2 level of theory, employing triple-ζ quality basis sets. The interaction energies for these complexes were calculated employing the RCCSD(T) level of theory with quadruple-ζ quality basis sets. Trends in binding energies, De, equilibrium bond lengths, Re, and bond angles are discussed and rationalized by analyzing the electronic density. Mulliken, natural population, and atoms-in-molecules (AIM) population analyses are presented. It is found that some of these complexes involving the heavier Group 2 metals are bent whereas others are linear, deviating from observations for the corresponding Be and Mg metal-containing complexes, which have all previously been found to be bent. The results are discussed in terms of orbital hybridization and the different types of interaction present in these species

    Basic science232. Certolizumab pegol prevents pro-inflammatory alterations in endothelial cell function

    Get PDF
    Background: Cardiovascular disease is a major comorbidity of rheumatoid arthritis (RA) and a leading cause of death. Chronic systemic inflammation involving tumour necrosis factor alpha (TNF) could contribute to endothelial activation and atherogenesis. A number of anti-TNF therapies are in current use for the treatment of RA, including certolizumab pegol (CZP), (Cimzia ®; UCB, Belgium). Anti-TNF therapy has been associated with reduced clinical cardiovascular disease risk and ameliorated vascular function in RA patients. However, the specific effects of TNF inhibitors on endothelial cell function are largely unknown. Our aim was to investigate the mechanisms underpinning CZP effects on TNF-activated human endothelial cells. Methods: Human aortic endothelial cells (HAoECs) were cultured in vitro and exposed to a) TNF alone, b) TNF plus CZP, or c) neither agent. Microarray analysis was used to examine the transcriptional profile of cells treated for 6 hrs and quantitative polymerase chain reaction (qPCR) analysed gene expression at 1, 3, 6 and 24 hrs. NF-κB localization and IκB degradation were investigated using immunocytochemistry, high content analysis and western blotting. Flow cytometry was conducted to detect microparticle release from HAoECs. Results: Transcriptional profiling revealed that while TNF alone had strong effects on endothelial gene expression, TNF and CZP in combination produced a global gene expression pattern similar to untreated control. The two most highly up-regulated genes in response to TNF treatment were adhesion molecules E-selectin and VCAM-1 (q 0.2 compared to control; p > 0.05 compared to TNF alone). The NF-κB pathway was confirmed as a downstream target of TNF-induced HAoEC activation, via nuclear translocation of NF-κB and degradation of IκB, effects which were abolished by treatment with CZP. In addition, flow cytometry detected an increased production of endothelial microparticles in TNF-activated HAoECs, which was prevented by treatment with CZP. Conclusions: We have found at a cellular level that a clinically available TNF inhibitor, CZP reduces the expression of adhesion molecule expression, and prevents TNF-induced activation of the NF-κB pathway. Furthermore, CZP prevents the production of microparticles by activated endothelial cells. This could be central to the prevention of inflammatory environments underlying these conditions and measurement of microparticles has potential as a novel prognostic marker for future cardiovascular events in this patient group. Disclosure statement: Y.A. received a research grant from UCB. I.B. received a research grant from UCB. S.H. received a research grant from UCB. All other authors have declared no conflicts of interes

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF

    Search for dark matter in association with a Higgs boson decaying to bb-quarks in pppp collisions at s=13\sqrt s=13 TeV with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF
    corecore