312 research outputs found

    Identification of the connections in biologically inspired neural networks

    Get PDF
    We developed an identification method to find the strength of the connections between neurons from their behavior in small biologically-inspired artificial neural networks. That is, given the network external inputs and the temporal firing pattern of the neurons, we can calculate a solution for the strengths of the connections between neurons and the initial neuron activations if a solution exists. The method determines directly if there is a solution to a particular neural network problem. No training of the network is required. It should be noted that this is a first pass at the solution of a difficult problem. The neuron and network models chosen are related to biology but do not contain all of its complexities, some of which we hope to add to the model in future work. A variety of new results have been obtained. First, the method has been tailored to produce connection weight matrix solutions for networks with important features of biological neural (bioneural) networks. Second, a computationally efficient method of finding a robust central solution has been developed. This later method also enables us to find the most consistent solution in the presence of noisy data. Prospects of applying our method to identify bioneural network connections are exciting because such connections are almost impossible to measure in the laboratory. Knowledge of such connections would facilitate an understanding of bioneural networks and would allow the construction of the electronic counterparts of bioneural networks on very large scale integrated (VLSI) circuits

    High daily energy expenditure of incubating shorebirds on High Arctic tundra: a circumpolar study

    Get PDF
    1. Given the allometric scaling of thermoregulatory capacity in birds, and the cold and exposed Arctic environment, it was predicted that Arctic-breeding shorebirds should incur high costs during incubation. Using doubly labelled water (DLW), daily energy expenditure (DEE) during incubation was measured in eight shorebird species weighing between 29 and 142 g at various sites in the Eurasian and Canadian High Arctic. The results are compared with a compilation of similar data for birds at lower latitudes. 2. There was a significant positive correlation between species average DEE and body mass (DEE (kJ day−1) = 28·12 BM (g)^0·524, r^2 = 0·90). The slopes of the allometric regression lines for DEE on body mass of tundra-breeding birds and lower latitude species (a sample mostly of passerines but including several shorebirds) are similar (0·548 vs 0·545). DEE is about 50% higher in birds on the tundra than in temperate breeding areas. 3. Data for radiomarked Red Knots for which the time budgets during DLW measurements were known, indicated that foraging away from the nest on open tundra is almost twice as costly as incubating a four-egg clutch. 4. During the incubation phase in the High Arctic, tundra-breeding shorebirds appear to incur among the highest DEE levels of any time of the year. The rates of energy expenditure measured here are among the highest reported in the literature so far, reaching inferred ceilings of sustainable energy turnover rates.

    Diagnosing Capnocytophaga canimorsus Infections

    Get PDF
    We reviewed clinical and epidemiologic features of 56 human Capnocytophaga canimorsus isolates submitted during a 32-year period to California's Microbial Diseases Laboratory for identification. An increasing number of isolates identified as C. canimorsus have been submitted since 1990. Many laboratories still have difficulty correctly identifying this species

    Dominant mutations of the Notch ligand Jagged1 cause peripheral neuropathy

    Get PDF
    Notch signaling is a highly conserved intercellular pathway with tightly regulated and pleiotropic roles in normal tissue development and homeostasis. Dysregulated Notch signaling has also been implicated in human disease, including multiple forms of cancer, and represents an emerging therapeutic target. Successful development of such therapeutics requires a detailed understanding of potential on-target toxicities. Here, we identify autosomal dominant mutations of the canonical Notch ligand Jagged1 (or JAG1) as a cause of peripheral nerve disease in 2 unrelated families with the hereditary axonal neuropathy Charcot-Marie-Tooth disease type 2 (CMT2). Affected individuals in both families exhibited severe vocal fold paresis, a rare feature of peripheral nerve disease that can be life-threatening. Our studies of mutant protein posttranslational modification and localization indicated that the mutations (p.Ser577Arg, p.Ser650Pro) impair protein glycosylation and reduce JAG1 cell surface expression. Mice harboring heterozygous CMT2-associated mutations exhibited mild peripheral neuropathy, and homozygous expression resulted in embryonic lethality by midgestation. Together, our findings highlight a critical role for JAG1 in maintaining peripheral nerve integrity, particularly in the recurrent laryngeal nerve, and provide a basis for the evaluation of peripheral neuropathy as part of the clinical development of Notch pathway–modulating therapeutics

    Safety and pharmacokinetics of novel selective vascular endothelial growth factor receptor-2 inhibitor YN968D1 in patients with advanced malignancies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>YN968D1 (Apatinib) selectively inhibits phosphorylation of VEGFR-2 and tumor angiogenesis in mice model. The study was conducted to determine the maximum tolerated dose (MTD), safety profile, pharmacokinetic variables, and antitumor activity in advanced solid malignancies.</p> <p>Methods</p> <p>This dose-escalation study was conducted according to the Chinese State Food and Drug Administration (SFDA) recommendations in patients with advanced solid tumors to determine the MTD for orally administered apatinib. Doses of continuously administered apatinib were escalated from 250 mg. Treatment continued after dose-escalation phase until withdrawal of consent, intolerable toxicities, disease progression or death.</p> <p>Results</p> <p>Forty-six patients were enrolled. Hypertension and hand-foot syndrome were the two dose-limiting toxicities noted at dose level of 1000 mg. MTD was determined to be 850 mg once daily. Pharmacokinetic analysis showed early absorption with a half-life of 9 hours. The mean half-life was constant over all dose groups. Steady-state conditions analysis suggested no accumulation during 56 days of once-daily administration. The most frequently observed drug-related adverse events were hypertension (69.5%, 29 grade 1-2 and 3 grade 3-4), proteinuria (47.8%, 16 grade 1-2 and 6 grade 3-4), and hand-foot syndrome (45.6%, 15 grade 1-2 and 6 grade 3-4). Among the thirty-seven evaluable patients, PR was noted in seven patients (18.9%), SD 24 (64.9%), with a disease control rate of 83.8% at 8 weeks.</p> <p>Conclusions</p> <p>The recommended dose of 750 mg once daily was well tolerated. Encouraging antitumor activity across a broad range of malignancies warrants further evaluation in selected populations.</p> <p>Trial registration</p> <p>ClinicalTrials.gov unique identifier: NCT00633490</p

    I've Seen Fire and I've Seen Rain: Public Management and Performance After a Natural Disaster

    Get PDF
    Kenneth J. Meier is the Charles H. Gregory Chair in Liberal Arts at Texas A&M University. He also directs the Project for Equity, Representation and Governance, the Texas Educational Excellence Project, and the Carlos Cantu Hispanic Education and Opportunity Endowment and holds a joint appointment as a Professor of Public Management at the Cardiff University School of Business, Wales, United Kingdom.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Clinical implication of HLA class I expression in breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human leukocyte antigen (HLA)-class I molecules on tumor cells have been regarded as crucial sites where cytotoxic T lymphocytes (CTL) can recognize tumor-specific antigens and are strongly associated with anti-tumor activity. However, the clinical impact of HLA class I expression in breast cancer has not been clarified.</p> <p>Methods</p> <p>A total of 212 breast cancer patients who received curative surgery from 1993 to 2003 were enrolled in the current study. HLA class I expression was examined immunohistochemically using an anti-HLA class I monoclonal antibody. The correlation between HLA class I positivity and clinical factors was analyzed.</p> <p>Results</p> <p>The downregulation of HLA class I expression in breast cancer was observed in 69 patients (32.5%). HLA class I downregulation was significantly associated with nodal involvement (p < 0.05), TNM stage (p < 0.05), lymphatic invasion (p < 0.01), and venous invasion (p < 0.05). Patients with preserved HLA class I had significantly better disease-free interval (DFI) than those with loss of HLA class I (p < 0.05). However, in multivariable analysis, HLA class I was not selected as one of the independent prognostic factors of disease-free interval.</p> <p>Conclusion</p> <p>The examination of HLA class I expression is useful for the prediction of tumor progression and recurrent risk of breast cancer via the antitumor immune system.</p

    FTY720 Suppresses Liver Tumor Metastasis by Reducing the Population of Circulating Endothelial Progenitor Cells

    Get PDF
    Background: Surgical procedures such as liver resection and liver transplantation are the first-line treatments for hepatocellular carcinoma (HCC) patients. However, the high incidence of tumor recurrence and metastasis after liver surgery remains a major problem. Recent studies have shown that hepatic ischemia-reperfusion (I/R) injury and endothelial progenitor cells (EPCs) contribute to tumor growth and metastasis. We aim to investigate the mechanism of FTY720, which was originally applied as an immunomodulator, on suppression of liver tumor metastasis after liver resection and partial hepatic I/R injury. Methodology/Principal Findings: An orthotopic liver tumor model in Buffalo rat was established using the hepatocellular carcinoma cell line McA-RH7777. Two weeks after orthotopic liver tumor implantation, the rats underwent liver resection for tumor-bearing lobe and partial hepatic I/R injury. FTY720 (2 mg/kg) was administered through the inferior caval vein before and after I/R injury. Blood samples were taken at days 0, 1, 3, 7, 14, 21 and 28 for detection of circulating EPCs (CD133+CD34+). Our results showed that intrahepatic and lung metastases were significantly inhibited together with less tumor angiogenesis by FTY720 treatment. The number of circulating EPCs was also significantly decreased by FTY720 treatment from day 7 to day 28. Hepatic gene expressions of CXCL10, VEGF, CXCR3, CXCR4 induced by hepatic I/R injury were down-regulated in the treatment group. Conclusions/Significance: FTY720 suppressed liver tumor metastasis after liver resection marred by hepatic I/R injury in a rat liver tumor model by attenuating hepatic I/R injury and reducing circulating EPCs. © 2012 Li et al.published_or_final_versio
    • 

    corecore