20 research outputs found

    Anisotropic magnetoresistance in a 2DEG in a quasi-random magnetic field

    Full text link
    We present magnetotransport results for a 2D electron gas (2DEG) subject to the quasi-random magnetic field produced by randomly positioned sub-micron Co dots deposited onto the surface of a GaAs/AlGaAs heterostructure. We observe strong local and non-local anisotropic magnetoresistance for external magnetic fields in the plane of the 2DEG. Monte-Carlo calculations confirm that this is due to the changing topology of the quasi-random magnetic field in which electrons are guided predominantly along contours of zero magnetic field.Comment: 4 pages, 6 figures, submitted to Phys. Rev.

    Adaptive traits to improve durum wheat yield in drought and crown rot environments

    Get PDF
    Durum wheat (Triticum turgidum L. ssp. durum) production can experience significant yield losses due to crown rot (CR) disease. Losses are usually exacerbated when disease infection coincides with terminal drought. Durum wheat is very susceptible to CR, and resistant germplasm is not currently available in elite breeding pools. We hypothesize that deploying physiological traits for drought adaptation, such as optimal root system architecture to reduce water stress, might minimize losses due to CR infection. This study evaluated a subset of lines from a nested association mapping population for stay-green traits, CR incidence and yield in field experiments as well as root traits under controlled conditions. Weekly measurements of normalized difference vegetative index (NDVI) in the field were used to model canopy senescence and to determine stay-green traits for each genotype. Genome-wide association studies using DArTseq molecular markers identified quantitative trait loci (QTLs) on chromosome 6B (qCR-6B) associated with CR tolerance and stay-green. We explored the value of qCR-6B and a major QTL for root angle QTL qSRA-6A using yield datasets from six rainfed environments, including two environments with high CR disease pressure. In the absence of CR, the favorable allele for qSRA-6A provided an average yield advantage of 0.57 t·ha−1, whereas in the presence of CR, the combination of favorable alleles for both qSRA-6A and qCR-6B resulted in a yield advantage of 0.90 t·ha−1. Results of this study highlight the value of combining above- and belowground physiological traits to enhance yield potential. We anticipate that these insights will assist breeders to design improved durum varieties that mitigate production losses due to water deficit and CR.Samir Alahmad, Yichen Kang, Eric Dinglasan, Elisabetta Mazzucotelli, Kai P. Voss-Fels, Jason A. Able, Jack Christopher, Filippo M. Bassi and Lee T. Hicke

    A major root architecture QTL responding to water limitation in durum wheat

    Get PDF
    The optimal root system architecture (RSA) of a crop is context dependent and critical for efficient resource capture in the soil. Narrow root growth angle promoting deeper root growth is often associated with improved access to water and nutrients in deep soils during terminal drought. RSA, therefore is a drought-adaptive trait that could minimize yield losses in regions with limited rainfall. Here, GWAS for seminal root angle (SRA) identified seven marker-trait associations clustered on chromosome 6A, representing a major quantitative trait locus (qSRA-6A) which also displayed high levels of pairwise LD (r 2 = 0.67). Subsequent haplotype analysis revealed significant differences between major groups. Candidate gene analysis revealed loci related to gravitropism, polar growth and hormonal signaling. No differences were observed for root biomass between lines carrying hap1 and hap2 for qSRA-6A, highlighting the opportunity to perform marker-assisted selection for the qSRA-6A locus and directly select for wide or narrow RSA, without influencing root biomass. Our study revealed that the genetic predisposition for deep rooting was best expressed under water-limitation, yet the root system displayed plasticity producing root growth in response to water availability in upper soil layers. We discuss the potential to deploy root architectural traits in cultivars to enhance yield stability in environments that experience limited rainfall.Samir Alahmad, Khaoula El Hassouni, Filippo M. Bassi, Eric Dinglasan, Chvan Youssef, Georgia Quarry, Alpaslan Aksoy, Elisabetta Mazzucotelli, Angéla Juhåsz, Jason A. Able, Jack Christopher, Kai P. Voss-Fels and Lee T. Hicke

    Technological perspectives for plant breeding

    Get PDF
    New Breeding Technologies? For some, both inside and outside the scientific community, this phrase is synonymous with gene editing—or used exclusively to describe the application of CRISPR/Cas9 to plant improvement. Much as, historically, the term ‘biotech crops’ has been hijacked to only mean crop plants produced using genetic engineering

    Fast-forward breeding for a food-secure world

    Get PDF
    Crop production systems need to expand their outputs sustainably to feed a burgeoning human population. Advances in genome sequencing technologies combined with efficient trait mapping procedures accelerate the availability of beneficial alleles for breeding and research. Enhanced interoperability between different omics and phenotyping platforms, leveraged by evolving machine learning tools, will help provide mechanistic explanations for complex plant traits. Targeted and rapid assembly of beneficial alleles using optimized breeding strategies and precise genome editing techniques could deliver ideal crops for the future. Realizing desired productivity gains in the field is imperative for securing an adequate future food supply for 10 billion people

    A chickpea genetic variation map based on the sequencing of 3,366 genomes

    Get PDF
    Zero hunger and good health could be realized by 2030 through effective conservation, characterization and utilization of germplasm resources1. So far, few chickpea (Cicer arietinum) germplasm accessions have been characterized at the genome sequence level2. Here we present a detailed map of variation in 3,171 cultivated and 195 wild accessions to provide publicly available resources for chickpea genomics research and breeding. We constructed a chickpea pan-genome to describe genomic diversity across cultivated chickpea and its wild progenitor accessions. A divergence tree using genes present in around 80% of individuals in one species allowed us to estimate the divergence of Cicer over the last 21 million years. Our analysis found chromosomal segments and genes that show signatures of selection during domestication, migration and improvement. The chromosomal locations of deleterious mutations responsible for limited genetic diversity and decreased fitness were identified in elite germplasm. We identified superior haplotypes for improvement-related traits in landraces that can be introgressed into elite breeding lines through haplotype-based breeding, and found targets for purging deleterious alleles through genomics-assisted breeding and/or gene editing. Finally, we propose three crop breeding strategies based on genomic prediction to enhance crop productivity for 16 traits while avoiding the erosion of genetic diversity through optimal contribution selection (OCS)-based pre-breeding. The predicted performance for 100-seed weight, an important yield-related trait, increased by up to 23% and 12% with OCS- and haplotype-based genomic approaches, respectively
    corecore