10 research outputs found

    Nature, evolution and characterisation of rhizospheric chemical exudates affecting root herbivores

    No full text
    Similar to aboveground herbivores, root-feeding insects must locate and identify suitable resources. In the darkness of soil, they mainly rely on root chemical exudations and, therefore, have evolved specific behaviours. Because of their impact on crop yield, most of our knowledge in belowground chemical ecology is biased towards soil-dwelling insect pests. Yet the increasing literature on volatile-mediated interactions in the ground underpins the great importance of chemical signalling in this ecosystem and its potential in pest control. Here, we explore the ecology and physiology of these chemically based interactions. An evolutionary approach reveals interesting patterns in the response of insects to particular classes of volatile or water-soluble organic compounds commonly emitted by roots. Food web analyses reasonably support that volatiles are used as long-range cues whereas water-soluble molecules serve in host acceptance/rejection by the insect; however, data are still scarce. As a case study, the chemical ecology of Diabrotica virgifera virgifera is discussed and applications of belowground signalling in pest management are examined. Soil chemical ecology is an expanding field of research and will certainly be a hub of our understanding of soil communities and subsequently of the management of belowground ecosystem services

    Interactive visualization of Earth and space science computations

    No full text

    An Analysis of Soil Respiration across Northern Hemisphere Temperate Ecosystems

    Full text link
    Over two-thirds of terrestrial carbon is stored belowground and a significant amount of atmospheric CO<sub>2</sub> is respired by roots and microbes in soils. For this analysis, soil respiration (Rs) data were assembled from 31 AmeriFlux and CarboEurope sites representing deciduous broadleaf, evergreen needleleaf, grasslands, mixed deciduous/evergreen and woodland/savanna ecosystem types. Lowest to highest rates of soil respiration averaged over the growing season were grassland and woodland/savanna &lt deciduous broadleaf forests &lt evergreen needleleaf, mixed deciduous/evergreen forests with growing season soil respiration significantly different between forested and non-forested biomes (p &lt 0.001). Timing of peak respiration rates during the growing season varied from March/April in grasslands to July-September for all other biomes. Biomes with overall strongest relationship between soil respiration and soil temperature were from the deciduous and mixed forests (R⁲ ≥ 0.65). Maximum soil respiration was weakly related to maximum fine root biomass (R⁲ = 0.28) and positively related to the previous years' annual litterfall (R⁲ = 0.46). Published rates of annual soil respiration were linearly related to LAI and fine root carbon (R⁲ = 0.48, 0.47), as well as net primary production (NPP) (R⁲ = 0.44). At 10 sites, maximum growing season Rs was weakly correlated with annual GPP estimated from eddy covariance towersites (R⁲ = 0.29; p &lt 0.05), and annual soil respiration and total growing season Rs were not correlated with annual GPP (p &gt 0.1). Yet, previous studies indicate correlations on shorter time scales within site (e.g., weekly, monthly). Estimates of annual GPP from the Biome-BGC model were strongly correlated with observed annual estimates of soil respiration for six sites (R⁲ = 0.84; p &lt 0.01). Correlations from observations of Rs with NPP, LAI, fine root biomass and litterfall relate above and belowground inputs to labile pools that are available for decomposition. Our results suggest that simple empirical relationships with temperature and/or moisture that may be robust at individual sites may not be adequate to characterize soil CO<sub>2</sub> effluxes across space and time, agreeing with other multi-site studies. Information is needed on the timing and phenological controls of substrate availability (e.g., fine roots, LAI) and inputs (e.g., root turnover, litterfall) to improve our ability to accurately quantify the relationships between soil CO<sub>2</sub> effluxes and carbon substrate storage
    corecore