1,073 research outputs found

    The Apparent Morphology of Peculiar Galaxies at Intermediate to High Redshifts

    Get PDF
    We use rest frame ultraviolet (UV), B, and V band images of five nearby (z<0.02) interacting and/or starbursting galaxies to simulate deep HST observations of peculiar galaxies at medium to high redshifts. In particular, we simulate Hubble Deep Field (HDF) observations in the F606W and F814W filters of starburst galaxies in the redshift range z~0.5---2.5 by explicitly account for the combined effects of band-shifting and surface brightness dimming. We find that extended morphological features remain readily visible in the long exposures typical of the HDF out to redshifts of ~ 1. For systems above z~1.5, the simulated morphologies look remarkably similar to those of the faint objects found in the HDF and other deep HST fields. Peculiar starburst galaxies therefore appear to be the best local analogs to the highest redshift galaxies in terms of morphology, star formation rates, and spectral energy distributions. Nevertheless, photometric measurements of the z>1.5 images fail to recover the true global properties of the underlying systems. This is because the high-z observations are sensitive to the rest-frame UV emission, which is dominated by the most active star forming regions. The extended distribution of starlight from more evolved populations would not be detected. We conclude that imaging observations in the restframe UV alone cannot reveal whether high-z systems (z>1.5) are proto-galaxies, proto-bulges, or starbursts within a pre-existing population. Definitive statements regarding the global properties and dynamical states of these objects require deep imaging observations at longer wavelengths.Comment: 15 pages, AAS LaTex macros v4.0, 6 Figs. To appear in The Astronomical Journal. 1200 kB gzipped encapsulated postscript file of paper and high-resolution figures is available at http://www.ifa.hawaii.edu/~hibbard/highZ/ or http://www.ifa.hawaii.edu/~vacca/highz.htm

    The Neutral Hydrogen Distribution in Merging Galaxies: Differences between Stellar and Gaseous Tidal Morphologies

    Get PDF
    We have mapped the neutral atomic gas (HI) in the three disk-disk merger systems NGC 520, Arp 220, and Arp 299. These systems differ from the majority of the mergers mapped in HI, in that their stellar and gaseous tidal features do not coincide. In particular, they exhibit large stellar tidal features with little if any accompanying neutral gas and large gas-rich tidal features with little if any accompanying starlight. On smaller scales, there are striking anti-correlations where the gaseous and stellar tidal features appear to cross. We explore several possible causes for these differences, including dust obscuration, ram pressure stripping, and ionization effects. No single explanation can account for all of the observed differences. The fact that each of these systems shows evidence for a starburst driven superwind expanding in the direction of the most striking anti-correlations leads us to suggest that the superwind is primarily responsible for the observed differences, either by sweeping the features clear of gas via ram pressure, or by excavating a clear sightline towards the starburst and allowing UV photons to ionize regions of the tails.Comment: 16 pages, 5 figures, uses emulateapj.sty. To appear in the March 2000 issue of AJ. Version with full resolution figures is available via http://www.cv.nrao.edu/~jhibbard/HIdisp/HIdisp.htm

    Vertebrate fossils from late Cenozoic deposits of central Kansas

    Get PDF
    14 p., 14 fig.http://paleo.ku.edu/contributions.htm

    A New Sciurid of Blancan Age from Kansas and Nebraska

    Get PDF
    The collecting of vetebrate fossils from deposits of Blancan age in Kansas, Nebraska, and Texas during the past twelve years has revealed many interesting forms. Some species have been found to have wide geographic distribution. A large sciurid related to the woodchucks has been recognized from both Kansas and Nebraska and is here described as a new genus and species

    The effect of image position on the Independent Components of natural binocular images

    Get PDF
    Human visual performance degrades substantially as the angular distance from the fovea increases. This decrease in performance is found for both binocular and monocular vision. Although analysis of the statistics of natural images has provided significant insights into human visual processing, little research has focused on the statistical content of binocular images at eccentric angles. We applied Independent Component Analysis to rectangular image patches cut from locations within binocular images corresponding to different degrees of eccentricity. The distribution of components learned from the varying locations was examined to determine how these distributions varied across eccentricity. We found a general trend towards a broader spread of horizontal and vertical position disparity tunings in eccentric regions compared to the fovea, with the horizontal spread more pronounced than the vertical spread. Eccentric locations above the centroid show a strong bias towards far-tuned components, eccentric locations below the centroid show a strong bias towards near-tuned components. These distributions exhibit substantial similarities with physiological measurements in V1, however in common with previous research we also observe important differences, in particular distributions of binocular phase disparity which do not match physiologypublishersversionPeer reviewe

    A Shovel-Tusked Mastodon, \u3ci\u3eArnebelodon Fricki\u3c/i\u3e, from Kansas

    Get PDF
    Since the Amebelodontinae were first announced (Barbour 1927), a number of examples of the genus Amebelodon have presented themselves in various parts of Nebraska, Colorado, and in several places in Kansas. Thus its range has already been materially extended, many skeletal parts added, and the hope kindled that knowledge of this remarkable group of proboscideans is destined to be greatly enriched within the next few years. As may be seen in the accompanying lists of the known parts of Amebelodon preserved in various museums, there are already at hand the bones necessary for the assemblage of a nearly complete composite skeleton from which a fair restoration of the creature in life could be drawn. Furthermore it may be predicted that many other species of the amebelodonts and platybelodonts are sure to be found and published

    Ideal binocular disparity detectors learned using independent subspace analysis on binocular natural image pairs

    Get PDF
    This work was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) grant [BB/K018973/1].An influential theory of mammalian vision, known as the efficient coding hypothesis, holds that early stages in the visual cortex attempts to form an efficient coding of ecologically valid stimuli. Although numerous authors have successfully modelled some aspects of early vision mathematically, closer inspection has found substantial discrepancies between the predictions of some of these models and observations of neurons in the visual cortex. In particular analysis of linear-non-linear models of simple-cells using Independent Component Analysis has found a strong bias towards features on the horoptor. In order to investigate the link between the information content of binocular images, mathematical models of complex cells and physiological recordings, we applied Independent Subspace Analysis to binocular image patches in order to learn a set of complex-cell-like models. We found that these complex-cell-like models exhibited a wide range of binocular disparity-discriminability, although only a minority exhibited high binocular discrimination scores. However, in common with the linear-non-linear model case we found that feature detection was limited to the horoptor suggesting that current mathematical models are limited in their ability to explain the functionality of the visual cortex.Publisher PDFPeer reviewe
    • …
    corecore