16 research outputs found

    Strengthening functionally specific neural pathways with transcranial brain stimulation

    Get PDF
    Cortico-cortical paired associative stimulation (ccPAS) is a recently established offline dual-coil transcranial magnetic stimulation (TMS) protocol 1, 2, 3 based on the Hebbian principle of associative plasticity and designed to transiently enhance synaptic efficiency in neural pathways linking two interconnected (targeted) brain regions 4, 5. Here, we present a new ‘function-tuning ccPAS’ paradigm in which, by pairing ccPAS with the presentation of a specific visual feature, for example a specific motion direction, we can selectively target and enhance the synaptic efficiency of functionally specific, but spatially overlapping, pathways. We report that ccPAS applied in a state-dependent manner and at a low intensity selectively enhanced detection of the specific motion direction primed during the combined visual-TMS manipulations. This paradigm significantly enhances the specificity of TMS-induced plasticity, by allowing the targeting of cortico-cortical pathways associated with specific functions

    Linear filtering precedes nonlinear processing in early vision

    Get PDF
    Background: Nonlinearities play a significant role in early visual processing. They are central to the perception of spatial contrast variations, multiplicative transparencies and texture boundaries. This article concerns the stage of processing at which nonlinearities first become significant. Results: Subjects were adapted to a high contrast sinusoidal grating followed by a brief presentation of a contrast modulated test (plaid) pattern. Thresholds for the detection of the contrast modulation (the beat) were measured. Results show that threshold elevation is greatest when the orientation and spatial frequency of the adapting grating are close to the principal Fourier frequency (the carrier) of the test pattern. Adaptation to sinewave-gratings near the frequency of the contrast modulation has relatively little effect. The data also show that the processing of contrast is frequency selective, with a peak tuning frequency near 0.4 cycles per degree. Conclusions: The data are consistent with a model in which the contrast beats are processed in a frequency- specific manner, after an initial stage of frequency-specific and orientation-specific linear filtering

    Linear and non-linear mechanisms in the perception of stereoscopic slant and transparency

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN028351 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Linear and non-linear mechanisms in the perception of stereoscopic slant and transparency

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN028351 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    The visual processing of motion-defined transparency

    No full text
    Our understanding of how the visual system processes motion transparency, the phenomenon by which multiple directions of motion are perceived to coexist in the same spatial region, has grown considerably in the past decade. There is compelling evidence that the process is driven by global-motion mechanisms. Consequently, although transparently moving surfaces are readily segmented over an extended space, the visual system cannot separate two motion signals that coexist in the same local region. A related issue is whether the visual system can detect transparently moving surfaces simultaneously or whether the component signals encounter a serial 'bottleneck' during their processing. Our initial results show that, at sufficiently short stimulus durations, observers cannot accurately detect two superimposed directions; yet they have no difficulty in detecting one pattern direction in noise, supporting the serial-bottleneck scenario. However, in a second experiment, the difference in performance between the two tasks disappears when the component patterns are segregated. This discrepancy between the processing of transparent and non-overlapping patterns may be a consequence of suppressed activity of global-motion mechanisms when the transparent surfaces are presented in the same depth plane. To test this explanation, we repeated our initial experiment while separating the motion components in depth. The marked improvement in performance leads us to conclude that transparent motion signals are represented simultaneously

    Assembly of the Prothrombinase Complex

    No full text

    Past, present, and future of mars polar science: Outcomes and outlook from the 7th international conference on mars polar science and exploration

    No full text
    Mars Polar Science is a subfield of Mars science that encompasses all studies of the cryosphere of Mars and its interaction with the Martian environment. Every 4 yr, the community of scientists dedicated to this subfield meets to discuss new findings and debate open issues in the International Conference on Mars Polar Science and Exploration (ICMPSE). This paper summarizes the proceedings of the seventh ICMPSE and the progress made since the sixth edition. We highlight the most important advances and present the most salient open questions in the field today, as discussed and agreed upon by the participants of the conference. We also feature agreed-upon suggestions for future methods, measurements, instruments, and missions that would be essential to answering the main open questions presented. This work is thus an overview of the current status of Mars Polar Science and is intended to serve as a road map for the direction of the field during the next 4 yr and beyond, helping to shape its contribution within the larger context of planetary science and exploration. © 2021. The Author(s).Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore