42 research outputs found

    Circulating miRNAs - let's not waste the potential

    Get PDF

    Single-session measures of quadriceps neuromuscular function are reliable in healthy females and unaffected by age

    Get PDF
    This study aimed to determine the inter-session reliability of quadriceps neuromuscular function measurements in healthy young and older females

    Muscle miRNAs are influenced by sex at baseline and in response to exercise

    Get PDF
    Background: Sex differences in microRNA (miRNA) expression profiles have been found across multiple tissues. Skeletal muscle is one of the most sex-biased tissues of the body. MiRNAs are necessary for development and have regulatory roles in determining skeletal muscle phenotype and have important roles in the response to exercise in muscle. Yet there is limited research into the role and regulation of miRNAs in the skeletal muscle at baseline and in response to exercise, a well-known modulator of miRNA expression. The aim of this study was to investigate the effect of sex on miRNA expression in the skeletal muscle at baseline and after an acute bout of high-intensity interval exercise. A total of 758 miRNAs were measured using Taqman®miRNA arrays in the skeletal muscle of 42 healthy participants from the Gene SMART study (23 males and 19 females of comparable fitness levels and aged 18–45 years), of which 308 were detected. MiRNAs that differed by sex at baseline and whose change in expression following high-intensity interval exercise differed between the sexes were identified using mixed linear models adjusted for BMI and Wpeak. We performed in silico analyses to identify the putative gene targets of the exercise-induced, sex-specific miRNAs and overrepresentation analyses to identify enriched biological pathways. We performed functional assays by overexpressing two sex-biased miRNAs in human primary muscle cells derived from male and female donors to understand their downstream effects on the transcriptome. Results: At baseline, 148 miRNAs were differentially expressed in the skeletal muscle between the sexes. Interaction analysis identified 111 miRNAs whose response to an acute bout of high-intensity interval exercise differed between the sexes. Sex-biased miRNA gene targets were enriched for muscle-related processes including proliferation and differentiation of muscle cells and numerous metabolic pathways, suggesting that miRNAs participate in programming sex differences in skeletal muscle function. Overexpression of sex-biased miRNA-30a and miRNA-30c resulted in profound changes in gene expression profiles that were specific to the sex of the cell donor in human primary skeletal muscle cells. Conclusions: We uncovered sex differences in the expression levels of muscle miRNAs at baseline and in response to acute high-intensity interval exercise. These miRNAs target regulatory pathways essential to skeletal muscle development and metabolism. Our findings highlight that miRNAs play an important role in programming sex differences in the skeletal muscle phenotype

    Efficacy of high-intensity interval training for improving mental health and health-related quality of life in women with polycystic ovary syndrome

    Get PDF
    Women with PCOS have substantially greater symptoms of depression and anxiety, and a lower health-related quality of life (HRQoL) compared to women without PCOS. The aim of this study was to determine if high-intensity interval training (HIIT) could provide greater improvements in mental health outcomes than standard moderate-intensity continuous training (MICT). Twenty-nine overweight women with PCOS aged 18–45 years were randomly assigned to 12 weeks of either MICT (60–75% HRpeak, N = 15) or HIIT (> 90% HRpeak, N = 14). Outcome measures included symptoms of depression, anxiety and stress (DASS-21), general HRQoL (SF-36) and PCOS specific HRQoL (PCOSQ) collected at baseline and post-intervention. Reductions in depression (Δ − 1.7, P = 0.005), anxiety (Δ − 3.4, P < 0.001) and stress (Δ − 2.4, P = 0.003) scores were observed in the HIIT group, while MICT only resulted in a reduction in stress scores (Δ − 2.9, P = 0.001). Reductions in anxiety scores were significantly higher in the HIIT group compared to the MICT group (β = − 2.24, P = 0.020). Both HIIT and MICT significantly improved multiple domain scores from the SF-36 and PCOSQ. This study highlights the potential of HIIT for improving mental health and HRQoL in overweight women with PCOS. HIIT may be a viable strategy to reduce symptoms of depression and anxiety in women with PCOS, however, large-scale studies are required to confirm these findings. Trial registration number: ACTRN12615000242527

    Acute HIIE elicits similar changes in human skeletal muscle mitochondrial H2O2 release, respiration, and cell signaling as endurance exercise even with less work

    Get PDF
    It remains unclear whether high-intensity interval exercise (HIIE) elicits distinct molecular responses to traditional endurance exercise relative to the total work performed. We aimed to investigate the influence of exercise intensity on acute perturbations to skeletal muscle mitochondrial function (respiration and reactive oxygen species) and metabolic and redox signaling responses. In a randomized, repeated measures crossover design, eight recreationally active individuals (24 ± 5 yr; V̇O2peak: 48 ± 11 ml·kg−1·min−1) undertook continuous moderate-intensity [CMIE: 30 min, 50% peak power output (PPO)], high-intensity interval (HIIE: 5 × 4 min, 75% PPO, work matched to CMIE), and low-volume sprint interval (SIE: 4 × 30 s) exercise, ≥7 days apart. Each session included muscle biopsies at baseline, immediately, and 3 h postexercise for high-resolution mitochondrial respirometry (JO2) and H2O2 emission (JH2O2) and gene and protein expression analysis. Immediately postexercise and irrespective of protocol, Jo2 increased during complex I + II leak/state 4 respiration but JH2O2 decreased (P < 0.05). AMP-activated protein kinase and acetyl co-A carboxylase phosphorylation increased ~1.5 and 2.5-fold respectively, while thioredoxin-reductase-1 protein abundance was ~35% lower after CMIE vs. SIE (P < 0.05). At 3 h postexercise, regardless of protocol, JO2 was lower during both ADP-stimulated state 3 OXPHOS and uncoupled respiration (P < 0.05) but JH2O2 trended higher (P < 0.08) and PPARGC1A mRNA increased ~13-fold, and peroxiredoxin-1 protein decreased ~35%. In conclusion, intermittent exercise performed at high intensities has similar dynamic effects on muscle mitochondrial function compared with endurance exercise, irrespective of whether total workload is matched. This suggests exercise prescription can accommodate individual preferences while generating comparable molecular signals known to promote beneficial metabolic adaptations

    The Genetics of Polycystic Ovary Syndrome: An Overview of Candidate Gene Systematic Reviews and Genome-Wide Association Studies

    Get PDF
    Polycystic Ovary Syndrome (PCOS) is a complex condition with mechanisms likely to involve the interaction between genetics and lifestyle. Familial clustering of PCOS symptoms is well documented, providing evidence for a genetic contribution to the condition. This overview aims firstly to systematically summarise the current literature surrounding genetics and PCOS, and secondly, to assess the methodological quality of current systematic reviews and identify limitations. Four databases were searched to identify candidate gene systematic reviews, and quality was assessed with the AMSTAR tool. Genome-wide association studies (GWAS) were identified by a semi structured literature search. Of the candidate gene systematic reviews, 17 were of high to moderate quality and four were of low quality. A total of 19 gene loci have been associated with risk of PCOS in GWAS, and 11 of these have been replicated across two different ancestries. Gene loci were located in the neuroendocrine, metabolic, and reproductive pathways. Overall, th

    Exercise and insulin resistance in PCOS: muscle insulin signalling and fibrosis

    Get PDF
    OBJECTIVE:Mechanisms of insulin resistance in polycystic ovary syndrome (PCOS) remain ill-defined, contributing to sub-optimal therapies. Recognising skeletal muscle plays a key role in glucose homeostasis we investigated early insulin signalling, its association with aberrant transforming growth factor β (TGFβ) regulated tissue fibrosis. We also explored the impact of aerobic exercise on these molecular pathways. METHODS:A secondary analysis from a cross-sectional study was undertaken in women with (n=30) or without (n=29) PCOS across lean and overweight BMIs. A subset of participants with (n=8) or without (n=8) PCOS who were overweight completed 12-weeks of aerobic exercise training. Muscle was sampled before and 30 min into a euglycaemic-hyperinsulinaemic clamp pre- and post-training. RESULTS:We found reduced signalling in PCOS of mechanistic target of rapamycin (mTOR). Exercise training augmented but did not completely rescue this signalling defect in women with PCOS. Genes in the TGFβ signalling network were upregulated in skeletal muscle in the overweight women with PCOS but were unresponsive to exercise training except for genes encoding LOX, collagen 1 and 3. CONCLUSIONS:We provide new insights into defects in early insulin signalling, tissue fibrosis, and hyperandrogenism in PCOS-specific insulin resistance in lean and overweight women. PCOS-specific insulin-signalling defects were isolated to mTOR, while gene expression implicated TGFβ ligand regulating a fibrosis in the PCOS-obesity synergy in insulin resistance and altered responses to exercise. Interestingly, there was little evidence for hyperandrogenism as a mechanism for insulin resistance

    Aerobic capacity and telomere length in human skeletal muscle and leukocytes across the lifespan

    Get PDF
    A reduction in aerobic capacity and the shortening of telomeres are hallmarks of the ageing process. We examined whether a lower aerobic capacity is associated with shorter TL in skeletal muscle and/or leukocytes, across a wide age range of individuals. We also tested whether TL in human skeletal muscle (MTL) correlates with TL in leukocytes (LTL). Eighty-two recreationally active, healthy men from the Gene SMART cohort (31.4±8.2 years; body mass index (BMI)=25.3±3.3kg/m2), and 11 community dwelling older men (74.2±7.5years-old; BMI=28.7±2.8kg/m2) participated in the study. Leukocytes and skeletal muscle samples were collected at rest. Relative telomere length (T/S ratio) was measured by RT-PCR. Associations between TL, aerobic capacity (VO2 peak and peak power) and age were assessed with robust linear models. Older age was associated with shorter LTL (45% variance explained, P<0.001), but not MTL (P= 0.7). Aerobic capacity was not associated with MTL (P=0.5), nor LTL (P=0.3). MTL and LTL were correlated across the lifespan (rs=0.26, P=0.03). In healthy individuals, age explain most of the variability of LTL and this appears to be independent of individual aerobic capacity. Individuals with longer LTL also have a longer MTL, suggesting that there might be a shared molecular mechanism regulating telomere length
    corecore