51 research outputs found
A new composition-sensitive parameter for Ultra-High Energy Cosmic Rays
A new family of parameters intended for composition studies in cosmic ray
surface array detectors is proposed. The application of this technique to
different array layout designs has been analyzed. The parameters make exclusive
use of surface data combining the information from the total signal at each
triggered detector and the array geometry. They are sensitive to the combined
effects of the different muon and electromagnetic components on the lateral
distribution function of proton and iron initiated showers at any given primary
energy. Analytical and numerical studies have been performed in order to assess
the reliability, stability and optimization of these parameters. Experimental
uncertainties, the underestimation of the muon component in the shower
simulation codes, intrinsic fluctuations and reconstruction errors are
considered and discussed in a quantitative way. The potential discrimination
power of these parameters, under realistic experimental conditions, is compared
on a simplified, albeit quantitative way, with that expected from other surface
and fluorescence estimators.Comment: 27 pages, 17 figures. Submitted to a refereed journa
Prospects for GMRT to Observe Radio Waves from UHE Particles Interacting with the Moon
Ultra high energy (UHE) particles of cosmic origin impact the lunar regolith
and produce radio signals through Askaryan effect, signals that can be detected
by Earth based radio telescopes. We calculate the expected sensitivity for
observation of such events at the Giant Metrewave Radio Telescope (GMRT), both
for UHE cosmic rays (CR) and UHE neutrino interactions. We find that for 30
days of observation time a significant number of detectable events is expected
above eV for UHECR or neutrino fluxes close to the current limits.
Null detection over a period of 30 days will lower the experimental bounds on
UHE particle fluxes by magnitudes competitive to both present and future
experiments at the very highest energies.Comment: 21 pages, 9 figure
Search for single sources of ultra high energy cosmic rays on the sky
In this paper, we suggest a new way to identify single bright sources of
Ultra High Energy Cosmic Rays (UHECR) on the sky, on top of background. We look
for doublets of events at the highest energies, E > 6 x 10^19 eV, and identify
low energy tails, which are deflected by the Galactic Magnetic Field (GMF). For
the sources which are detected, we can recover their angular positions on the
sky within one degree from the real ones in 68% of cases. The reconstruction of
the deflection power of the regular GMF is strongly affected by the value of
the turbulent GMF. For typical values of 4 microG near the Earth, one can
reconstruct the deflection power with 25% precision in 68% of cases.Comment: 20 pages, 10 figures. Corresponds to the version published in JCA
Strong interactions in air showers
We study the role new gauge interactions in extensions of the standard model
play in air showers initiated by ultrahigh-energy cosmic rays. Hadron-hadron
events remain dominated by quantum chromodynamics, while projectiles and/or
targets from beyond the standard model permit us to see qualitative differences
arising due to the new interactions.Comment: 35 pages, 12 figures. Accepted for publication in JCA
Bounds on the cosmogenic neutrino flux
Under the assumption that some part of the observed highest energy cosmic
rays consists of protons originating from cosmological distances, we derive
bounds on the associated flux of neutrinos generated by inelastic processes
with the cosmic microwave background photons. We exploit two methods. First, a
power-like injection spectrum is assumed. Then, a model-independent technique,
based on the inversion of the observed proton flux, is presented. The inferred
lower bound is quite robust. As expected, the upper bound depends on the
unknown composition of the highest energy cosmic rays. Our results represent
benchmarks for all ultrahigh energy neutrino telescopes.Comment: 12 pages, 6 figure
Ultrahigh Energy Nuclei in the Galactic Magnetic Field
Observations are consistent with a significant fraction of heavy nuclei in
the cosmic ray flux above a few times 10^19 eV. Such nuclei can be deflected
considerably in the Galactic magnetic field, with important implications for
the search of their sources. We perform detailed simulations of heavy nuclei
propagation within recent Galactic magnetic field models. While such models are
not yet sufficiently constrained to predict deflection maps in detail, we find
general features of the distribution of (de-) magnified flux from sources.
Since in most theoretical models sources of heavy nuclei are located in the
local large scale structure of galaxies, we show examples of images of several
nearby galaxy clusters and of the supergalactic plane. Such general features
may be useful to develop efficient methods for source reconstruction from
observed ultrahigh energy cosmic ray arrival directions.Comment: 17 pages, 11 figures. Published in JCA
Cross-Correlation between UHECR Arrival Distribution and Large-Scale Structure
We investigate correlation between the arrival directions of
ultra-high-energy cosmic rays (UHECRs) and the large-scale structure (LSS) of
the Universe by using statistical quantities which can find the angular scale
of the correlation. The Infrared Astronomical Satellite Point Source Redshift
Survey (IRAS PSCz) catalog of galaxies is adopted for LSS. We find a positive
correlation of the highest energy events detected by the Pierre Auger
Observatory (PAO) with the IRAS galaxies inside within the angular
scale of . This positive correlation observed in the southern
sky implies that a significant fraction of the highest energy events comes from
nearby extragalactic objects. We also analyze the data of the Akeno Giant Air
Shower Array (AGASA) which observed the northern hemisphere, but the obvious
signals of positive correlation with the galaxy distribution are not found.
Since the exposure of the AGASA is smaller than the PAO, the cross-correlation
in the northern sky should be tested using a larger number of events detected
in the future. We also discuss the correlation using the all-sky combined data
sets of both the PAO and AGASA, and find a significant correlation within . These angular scales can constrain several models of intergalactic
magnetic field. These cross-correlation signals can be well reproduced by a
source model in which the distribution of UHECR sources is related to the IRAS
galaxies.Comment: 21 pages,7 figure
Composition of UHECR and the Pierre Auger Observatory Spectrum
We fit the recently published Pierre Auger ultra-high energy cosmic ray
spectrum assuming that either nucleons or nuclei are emitted at the sources. We
consider the simplified cases of pure proton, or pure oxygen, or pure iron
injection. We perform an exhaustive scan in the source evolution factor, the
spectral index, the maximum energy of the source spectrum Z E_{max}, and the
minimum distance to the sources. We show that the Pierre Auger spectrum agrees
with any of the source compositions we assumed. For iron, in particular, there
are two distinct solutions with high and low E_{max} (e.g. 6.4 10^{20} eV and 2
10^{19} eV) respectively which could be distinguished by either a large
fraction or the near absence of proton primaries at the highest energies. We
raise the possibility that an iron dominated injected flux may be in line with
the latest composition measurement from the Pierre Auger Observatory where a
hint of heavy element dominance is seen.Comment: 19 pages, 6 figures (33 panels)- Uses iopart.cls and iopart12.clo- In
version 2: addition of a few sentences and two reference
- …
