51 research outputs found

    A new composition-sensitive parameter for Ultra-High Energy Cosmic Rays

    Get PDF
    A new family of parameters intended for composition studies in cosmic ray surface array detectors is proposed. The application of this technique to different array layout designs has been analyzed. The parameters make exclusive use of surface data combining the information from the total signal at each triggered detector and the array geometry. They are sensitive to the combined effects of the different muon and electromagnetic components on the lateral distribution function of proton and iron initiated showers at any given primary energy. Analytical and numerical studies have been performed in order to assess the reliability, stability and optimization of these parameters. Experimental uncertainties, the underestimation of the muon component in the shower simulation codes, intrinsic fluctuations and reconstruction errors are considered and discussed in a quantitative way. The potential discrimination power of these parameters, under realistic experimental conditions, is compared on a simplified, albeit quantitative way, with that expected from other surface and fluorescence estimators.Comment: 27 pages, 17 figures. Submitted to a refereed journa

    Search for Cross-Correlations of Ultra--High-Energy Cosmic Rays with BL Lacertae Objects

    Full text link
    We present the results of searches for correlation between ultra--high-energy cosmic rays observed in stereo mode by the High Resolution Fly's Eye (HiRes) experiment and objects of the BL Lac subclass of active galaxies. In particular, we discuss an excess of events correlating with confirmed BL Lacs in the Veron 10th Catalog. As described in detail in Abbasi et al. (2005), the significance level of these correlations cannot be reliably estimated due to the a posteriori nature of the search, and the results must be tested independently before any claim can be made. We identify the precise hypotheses that will be tested with independent data.Comment: 4 pages. To be presented at the 2005 ICRC in Pune, India, in Augus

    Predictions for high energy neutrino cross-sections from the ZEUS global PDF fits

    Full text link
    We have updated predictions for high energy neutrino and antineutrino charged current cross-sections within the conventional DGLAP formalism of NLO QCD using a modern PDF fit to HERA data, which also accounts in a systematic way for PDF uncertainties deriving from both model uncertainties and from the experimental uncertainties of the input data sets. Furthermore the PDFs are determined using an improved treatment of heavy quark thresholds. A measurement of the neutrino cross-section much below these predictions would signal the need for extension of the conventional formalism as in BFKL resummation, or even gluon recombination effects as in the colour glass condensate model.Comment: 10 pages (RevTeX4), 6 figures; expanded discussion of additional theoretical uncertainties at low x; accepted for publication in JHE

    Prospects for GMRT to Observe Radio Waves from UHE Particles Interacting with the Moon

    Full text link
    Ultra high energy (UHE) particles of cosmic origin impact the lunar regolith and produce radio signals through Askaryan effect, signals that can be detected by Earth based radio telescopes. We calculate the expected sensitivity for observation of such events at the Giant Metrewave Radio Telescope (GMRT), both for UHE cosmic rays (CR) and UHE neutrino interactions. We find that for 30 days of observation time a significant number of detectable events is expected above 102010^{20} eV for UHECR or neutrino fluxes close to the current limits. Null detection over a period of 30 days will lower the experimental bounds on UHE particle fluxes by magnitudes competitive to both present and future experiments at the very highest energies.Comment: 21 pages, 9 figure

    Search for single sources of ultra high energy cosmic rays on the sky

    Full text link
    In this paper, we suggest a new way to identify single bright sources of Ultra High Energy Cosmic Rays (UHECR) on the sky, on top of background. We look for doublets of events at the highest energies, E > 6 x 10^19 eV, and identify low energy tails, which are deflected by the Galactic Magnetic Field (GMF). For the sources which are detected, we can recover their angular positions on the sky within one degree from the real ones in 68% of cases. The reconstruction of the deflection power of the regular GMF is strongly affected by the value of the turbulent GMF. For typical values of 4 microG near the Earth, one can reconstruct the deflection power with 25% precision in 68% of cases.Comment: 20 pages, 10 figures. Corresponds to the version published in JCA

    Composition of UHECR and the Pierre Auger Observatory Spectrum

    Full text link
    We fit the recently published Pierre Auger ultra-high energy cosmic ray spectrum assuming that either nucleons or nuclei are emitted at the sources. We consider the simplified cases of pure proton, or pure oxygen, or pure iron injection. We perform an exhaustive scan in the source evolution factor, the spectral index, the maximum energy of the source spectrum Z E_{max}, and the minimum distance to the sources. We show that the Pierre Auger spectrum agrees with any of the source compositions we assumed. For iron, in particular, there are two distinct solutions with high and low E_{max} (e.g. 6.4 10^{20} eV and 2 10^{19} eV) respectively which could be distinguished by either a large fraction or the near absence of proton primaries at the highest energies. We raise the possibility that an iron dominated injected flux may be in line with the latest composition measurement from the Pierre Auger Observatory where a hint of heavy element dominance is seen.Comment: 19 pages, 6 figures (33 panels)- Uses iopart.cls and iopart12.clo- In version 2: addition of a few sentences and two reference

    Constraints on the Local Sources of Ultra High-Energy Cosmic Rays

    Full text link
    Ultra high-energy cosmic rays (UHECRs) are believed to be protons accelerated in magnetized plasma outflows of extra-Galactic sources. The acceleration of protons to ~10^{20} eV requires a source power L>10^{47} erg/s. The absence of steady sources of sufficient power within the GZK horizon of 100 Mpc, implies that UHECR sources are transient. We show that UHECR "flares" should be accompanied by strong X-ray and gamma-ray emission, and that X-ray and gamma-ray surveys constrain flares which last less than a decade to satisfy at least one of the following conditions: (i) L>10^{50} erg/s; (ii) the power carried by accelerated electrons is lower by a factor >10^2 than the power carried by magnetic fields or by >10^3 than the power in accelerated protons; or (iii) the sources exist only at low redshifts, z<<1. The implausibility of requirements (ii) and (iii) argue in favor of transient sources with L>10^{50} erg/s.Comment: 7 pages, 1 figure, submitted to JCA

    Strong interactions in air showers

    Full text link
    We study the role new gauge interactions in extensions of the standard model play in air showers initiated by ultrahigh-energy cosmic rays. Hadron-hadron events remain dominated by quantum chromodynamics, while projectiles and/or targets from beyond the standard model permit us to see qualitative differences arising due to the new interactions.Comment: 35 pages, 12 figures. Accepted for publication in JCA
    • …
    corecore