1,702 research outputs found

    The preferentially magnified active nucleus in IRAS F10214+4724 - II. Spatially resolved cold molecular gas

    Full text link
    We present JVLA observations of the cold (CO (1-0)) molecular gas in IRAS F10214+4724, a lensed ULIRG at z=2.3 with an obscured active nucleus. The galaxy is spatially and spectrally well-resolved in the CO (1-0) emission line. A CO (1-0) counter-image is detected at the 3-sigma level. Five of the 42 km/s channels (with >5-sigma detections) are mapped back into the source plane and their total magnification posterior PDFs sampled. This reveals a roughly linear arrangement, tentatively a rotating disk. We derive a molecular gas mass of M_gas = 1.2 +- 0.2 x 10^10 M_sun, assuming a ULIRG L_{CO}-to-M_{gas} conversion ratio of \alpha = 0.8 M_sun / (K km/s pc^2) that agrees well with the derived range of \alpha = 0.3 - 1.3 for separate dynamical mass estimates at assumed inclinations of i = 90 - 30 degrees. Based on the AGN and CO (1-0) peak emission positions and the lens model, we predict a distortion of the CO Spectral Line Energy Distribution (SLED) where higher order J lines that may be partially excited by AGN heating will be preferentially lensed owing to their smaller solid angles and closer proximity to the AGN and therefore the cusp of the caustic. Comparison with other lensing inversion results shows that the narrow line region and AGN radio core in IRAS F10214+4724 are preferentially lensed by a factor >~ 3 and 11 respectively, relative to the molecular gas emission. This distorts the global continuum emission Spectral Energy Distribution (SED) and suggests caution in unsophisticated uses of IRAS F10214+4724 as an archetype high-redshift ULIRG. We explore two Large Velocity Gradient (LVG) models, incorporating spatial CO (1-0) and (3-2) information and present tentative evidence for an extended, low excitation cold gas component that implies that the total molecular gas mass in IRAS F10214+4724 is a factor >~2 greater than that calculated using spatially unresolved CO observations.Comment: Dedicated to Steve Rawlings. Accepted for publication in MNRAS. 16 pages, 11 figure

    Sigma-Model Aether

    Get PDF
    Theories of low-energy Lorentz violation by a fixed-norm "aether" vector field with two-derivative kinetic terms have a globally bounded Hamiltonian and are perturbatively stable only if the vector is timelike and the kinetic term in the action takes the form of a sigma model. Here we investigate the phenomenological properties of this theory. We first consider the propagation of modes in the presence of gravity, and show that there is a unique choice of curvature coupling that leads to a theory without superluminal modes. Experimental constraints on this theory come from a number of sources, and we examine bounds in a two-dimensional parameter space. We then consider the cosmological evolution of the aether, arguing that the vector will naturally evolve to be orthogonal to constant-density hypersurfaces in a Friedmann-Robertson-Walker cosmology. Finally, we examine cosmological evolution in the presence of an extra compact dimension of space, concluding that a vector can maintain a constant projection along the extra dimension in an expanding universe only when the expansion is exponential.Comment: 8 pages, 2 figures; fixed minor typo and changed references in v

    SKA HI end2end simulation

    Get PDF
    The current status of the HI simulation efforts is presented, in which a self consistent simulation path is described and basic equations to calculate array sensitivities are given. There is a summary of the SKA Design Study (SKADS) sky simulation and a method for implementing it into the array simulator is presented. A short overview of HI sensitivity requirements is discussed and expected results for a simulated HI survey are presented.Comment: 7 pages, 6 figues, need skads2009.cls file to late

    The Stripe 82 1-2 GHz Very Large Array Snapshot Survey: Multiwavelength Counterparts

    Full text link
    We have combined spectrosopic and photometric data from the Sloan Digital Sky Survey (SDSS) with 1.41.4 GHz radio observations, conducted as part of the Stripe 82 1−21-2 GHz Snapshot Survey using the Karl G. Jansky Very Large Array (VLA), which covers ∼100\sim100 sq degrees, to a flux limit of 88 μ\muJy rms. Cross-matching the 11 76811\,768 radio source components with optical data via visual inspection results in a final sample of 4 7954\,795 cross-matched objects, of which 1 9961\,996 have spectroscopic redshifts and 2 7992\,799 objects have photometric redshifts. Three previously undiscovered Giant Radio Galaxies (GRGs) were found during the cross-matching process, which would have been missed using automated techniques. For the objects with spectroscopy we separate radio-loud Active Galactic Nuclei (AGN) and star-forming galaxies (SFGs) using three diagnostics and then further divide our radio-loud AGN into the HERG and LERG populations. A control matched sample of HERGs and LERGs, matched on stellar mass, redshift and radio luminosity, reveals that the host galaxies of LERGs are redder and more concentrated than HERGs. By combining with near-infrared data, we demonstrate that LERGs also follow a tight K−zK-z relationship. These results imply the LERG population are hosted by population of massive, passively evolving early-type galaxies. We go on to show that HERGs, LERGs, QSOs and star-forming galaxies in our sample all reside in different regions of a WISE colour-colour diagram. This cross-matched sample bridges the gap between previous `wide but shallow' and `deep but narrow' samples and will be useful for a number of future investigations.Comment: 17 pages, 19 figures. Resubmitted to MNRAS after the initial comment

    Six months of mass outflow and inclined rings in the ejecta of V1494 Aql

    Get PDF
    V1494 Aql was a very fast nova which reached a visual maximum of mv≃ 4.0 by the end of 1999 December 3. We report observations from 4 to 284 d after discovery, including submillimetre- and centimetre-band fluxes, a single MERLIN image and optical spectroscopy in the 410 to 700 nm range. The extent of the radio continuum emission is consistent with a recent lower distance estimate of 1.6 kpc. We conclude that the optical and radio emission arises from the same expanding ejecta. We show that these observations are not consistent with simple kinematical spherical shell models used in the past to explain the rise and fall of the radio flux density in these objects. The resolved remnant structure is consistent with an inclined ring of enhanced density within the ejecta. Optical spectroscopy indicates likely continued mass ejection for over 195 d, with the material becoming optically thin in the visible sometime between 195 and 285 d after outburst

    Further Observations of the Intermediate Mass Black Hole Candidate ESO 243-49 HLX-1

    Full text link
    The brightest Ultra-Luminous X-ray source HLX-1 in the galaxy ESO 243-49 currently provides strong evidence for the existence of intermediate mass black holes. Here we present the latest multi-wavelength results on this intriguing source in X-ray, UV and radio bands. We have refined the X-ray position to sub-arcsecond accuracy. We also report the detection of UV emission that could indicate ongoing star formation in the region around HLX-1. The lack of detectable radio emission at the X-ray position strengthens the argument against a background AGN.Comment: 4 pages, 2 figures. Accepted 11th of Feb 2010. Contributed talk to appear in Proceedings of "X-ray Astronomy 2009: Present Status, Multi-Wavelength Approach and Future Perspectives", Bologna, Italy, September 7-11, 2009, AIP, eds. A. Comastri, M. Cappi, and L. Angelin

    Expanding e-MERLIN with the Goonhilly Earth Station

    Full text link
    A consortium of universities has recently been formed with the goal of using the decommissioned telecommunications infrastructure at the Goonhilly Earth Station in Cornwall, UK, for astronomical purposes. One particular goal is the introduction of one or more of the ~30-metre parabolic antennas into the existing e-MERLIN radio interferometer. This article introduces this scheme and presents some simulations which quantify the improvements that would be brought to the e-MERLIN system. These include an approximate doubling of the spatial resolution of the array, an increase in its N-S extent with strong implications for imaging the most well-studied equatorial fields, accessible to ESO facilities including ALMA. It also increases the overlap between the e-MERLIN array and the European VLBI Network. We also discuss briefly some niche science areas in which an e-MERLIN array which included a receptor at Goonhilly would be potentially world-leading, in addition to enhancing the existing potential of e-MERLIN in its role as a Square Kilometer Array pathfinder instrument.Comment: 7 pages, 3 figures, to appear in the proceedings of "Astronomy with megastructures: Joint science with the E-ELT and SKA", 10-14 May 2010, Crete, Greece (Eds: Isobel Hook, Dimitra Rigopoulou, Steve Rawlings and Aris Karastergiou

    The Population of the Galactic Center Filaments: Position Angle Distribution Reveal a Degree-scale Collimated Outflow from Sgr A* along the Galactic Plane

    Full text link
    We have examined the distribution of the position angle (PA) of the Galactic center filaments with lengths L>66′′L > 66'' and <66′′ < 66'' as well as their length distribution as a function of PA. We find bimodal PA distributions of the filaments, long and short populations of radio filaments. Our PA study shows the evidence for a distinct population of short filaments with PA close to the Galactic plane. Mainly thermal short radio filaments (<66′′<66'') have PAs concentrated close to the Galactic plane within 60∘<PA<120∘60^\circ < \rm PA <120^\circ. Remarkably, the short filament PAs are radial with respect to the Galactic center at l<0∘l <0^\circ, and extend in the direction toward Sgr A*. On a smaller scale, the prominent Sgr E HII complex G358.7-0.0 provides a vivid example of the nearly radial distribution of short filaments. The bimodal PA distribution suggests different origin for two distinct filament populations. We argue that alignment of the short filament population results from the ram pressure of a degree-scale outflow from Sgr A* that exceeds the internal filament pressure, and aligns them along the Galactic plane. The ram pressure is estimated to be 2×106 \times10^6\, cm−3 ^{-3}\, K at a distance of 300pc, requiring biconical mass outflow rate 10−410^{-4} \msol\, yr−1^{-1} with an opening angle of ∼40∘\sim40^\circ. This outflow aligns not only the magnetized filaments along the Galactic plane but also accelerates thermal material associated with embedded or partially embedded clouds. This places an estimate of ∼\sim6 Myr as the age of the outflow.Comment: 19 pages, 8 figures, ApJL (June 2nd, 2023
    • …
    corecore