868 research outputs found

    Vector meson dominance and the rho meson

    Full text link
    We discuss the properties of vector mesons, in particular the rho^0, in the context of the Hidden Local Symmetry (HLS) model. This provides a unified framework to study several aspects of the low energy QCD sector. Firstly, we show that in the HLS model the physical photon is massless, without requiring off field diagonalization. We then demonstrate the equivalence of HLS and the two existing representations of vector meson dominance, VMD1 and VMD2, at both tree level and one loop order. Finally the S matrix pole position is shown to provide a model and process independent means of specifying the rho mass and width, in contrast to the real axis prescription currently used in the Particle Data Group tables.Comment: 18 pages, REVTE

    Brines from industrial water recycling: New ways to resource recovery

    Get PDF
    Stricter environmental regulation policies and freshwater as an increasingly valuable resource have led to global growth of zero liquid discharge (ZLD) processes in recent years. During this development, in addition to water, the recovery of recyclable materials, e.g. salts, from industrial wastewater and brines is considered more frequently. Within the framework of the HighCon research project, the subject of this study, a new ZLD process with the goal of pure single-salt recovery from industrial wastewater has been developed and investigated in a demonstrational setup at an industrial site. With regard to pure salts recovery, separating organic components is of great importance during the treatment of the concentrate arising from used water recycling. The removal of COD and of ions responsible for scaling worked very well using nanofiltration. The nanofiltration permeate containing the monovalent ions was pre-concentrated using electrodialysis and membrane distillation before selective crystallization for single-salt recovery was performed. An example economic case study for the newly developed ZLD process - based on demonstration results and considering optimization measures for a full-scale design - indicates that the costs are equal to those of a conventional ZLD process, which, however, does not provide inter alia the aforementioned benefit of single-salt recovery

    Extracting Br(omega->pi^+ pi^-) from the Time-like Pion Form-factor

    Full text link
    We extract the G-parity-violating branching ratio Br(omega->pi^+ pi^-) from the effective rho-omega mixing matrix element Pi_{rho omega}(s), determined from e^+e^- -> pi^+ pi^- data. The omega->pi^+ pi^- partial width can be determined either from the time-like pion form factor or through the constraint that the mixed physical propagator D_{rho omega}^{mu nu}(s) possesses no poles. The two procedures are inequivalent in practice, and we show why the first is preferred, to find finally Br(omega->pi^+ pi^-) = 1.9 +/- 0.3%.Comment: 12 pages (published version

    Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline

    Get PDF
    The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline

    Rat model of metastatic breast cancer monitored by MRI at 3 tesla and bioluminescence imaging with histological correlation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Establishing a large rodent model of brain metastasis that can be monitored using clinically relevant magnetic resonance imaging (MRI) techniques is challenging. Non-invasive imaging of brain metastasis in mice usually requires high field strength MR units and long imaging acquisition times. Using the brain seeking MDA-MB-231BR transfected with luciferase gene, a metastatic breast cancer brain tumor model was investigated in the nude rat. Serial MRI and bioluminescence imaging (BLI) was performed and findings were correlated with histology. Results demonstrated the utility of multimodality imaging in identifying unexpected sights of metastasis and monitoring the progression of disease in the nude rat.</p> <p>Methods</p> <p>Brain seeking breast cancer cells MDA-MB-231BR transfected with firefly luciferase (231BRL) were labeled with ferumoxides-protamine sulfate (FEPro) and 1-3 × 10<sup>6 </sup>cells were intracardiac (IC) injected. MRI and BLI were performed up to 4 weeks to monitor the early breast cancer cell infiltration into the brain and formation of metastases. Rats were euthanized at different time points and the imaging findings were correlated with histological analysis to validate the presence of metastases in tissues.</p> <p>Results</p> <p>Early metastasis of the FEPro labeled 231BRL were demonstrated onT2*-weighted MRI and BLI within 1 week post IC injection of cells. Micro-metastatic tumors were detected in the brain on T2-weighted MRI as early as 2 weeks post-injection in greater than 85% of rats. Unexpected skeletal metastases from the 231BRL cells were demonstrated and validated by multimodal imaging. Brain metastases were clearly visible on T2 weighted MRI by 3-4 weeks post infusion of 231BRL cells, however BLI did not demonstrate photon flux activity originating from the brain in all animals due to scattering of the photons from tumors.</p> <p>Conclusion</p> <p>A model of metastatic breast cancer in the nude rat was successfully developed and evaluated using multimodal imaging including MRI and BLI providing the ability to study the temporal and spatial distribution of metastases in the brain and skeleton.</p

    Rescattering and chiral dynamics in B\to \rho\pi decay

    Full text link
    We examine the role of B^0(\bar B^0) \to \sigma \pi^0 \to \pi^+\pi^- \pi^0 decay in the Dalitz plot analysis of B^0 (\bar B^0) \to \rho\pi \to \pi^+\pi^-\pi^0 decays, employed to extract the CKM parameter \alpha. The \sigma \pi channel is significant because it can break the relationship between the penguin contributions in B\to\rho^0\pi^0, B\to\rho^+\pi^-, and B\to\rho^-\pi^+ decays consequent to an assumption of isospin symmetry. Its presence thus mimics the effect of isospin violation. The \sigma\pi^0 state is of definite CP, however; we demonstrate that the B\to\rho\pi analysis can be generalized to include this channel without difficulty. The \sigma or f_0(400-1200) ``meson'' is a broad I=J=0 enhancement driven by strong \pi\pi rescattering; a suitable scalar form factor is constrained by the chiral dynamics of low-energy hadron-hadron interactions - it is rather different from the relativistic Breit-Wigner form adopted in earlier B\to\sigma\pi and D\to\sigma\pi analyses. We show that the use of this scalar form factor leads to an improved theoretical understanding of the measured ratio Br(\bar B^0 \to \rho^\mp \pi^\pm) / Br(B^-\to \rho^0 \pi^-).Comment: 26 pages, 8 figs, published version. typos fixed, minor change
    corecore