17 research outputs found

    CubeSpec, A Mission Overview

    Get PDF
    CubeSpec is an in-orbit demonstration CubeSat mission in the ESA technology programme, developed and funded in Belgium. The goal of the mission is to demonstrate high-spectral-resolution astronomical spectroscopy from a 6-unit CubeSat. The prime science demonstration case for the in-orbit demonstration mission is to unravel the interior of massive stars using asteroseismology by high-cadance monitoring of the variations in spectral line profiles during a few months. The technological challenges are numerous. The 10x20cm aperture telescope and echelle spectrometer have been designed to fit in a 10x10x20cm volume. Under low-Earth orbit thermal variations, maintaining the fast telescope focus and spectrometer alignment is achieved via an athermal design. Straylight rejection and thermal shielding from the Sun and Earth infrared flux is achieved via deploying Earth and Sunshades. The narrow spectrometer slit requires arcsecond-level pointing stability using a performant 3-axis wheel stabilised attitude control system with star tracker augmented with a fine beam steering mechanism controlled in closed loop with a guiding sensor. The high cadence, long-term monitoring requirement of the mission poses specific requirements on the orbit and operational scenarios to enable the required sky visibility. CubeSpec is starting the implementation phase, with a planned launch early 2024

    A doubling of microphytobenthos biomass coincides with a tenfold increase in denitrifier and total bacterial abundances in intertidal sediments of a temperate estuary.

    Get PDF
    Surface sediments are important systems for the removal of anthropogenically derived inorganic nitrogen in estuaries. They are often characterized by the presence of a microphytobenthos (MPB) biofilm, which can impact bacterial communities in underlying sediments for example by secretion of extracellular polymeric substances (EPS) and competition for nutrients (including nitrogen). Pyrosequencing and qPCR was performed on two intertidal surface sediments of the Westerschelde estuary characterized by a two-fold difference in MPB biomass but no difference in MPB composition. Doubling of MPB biomass was accompanied by a disproportionately (ten-fold) increase in total bacterial abundances while, unexpectedly, no difference in general community structure was observed, despite significantly lower bacterial richness and distinct community membership, mostly for non-abundant taxa. Denitrifier abundances corresponded likewise while community structure, both for nirS and nirK denitrifiers, remained unchanged, suggesting that competition with diatoms for nitrate is negligible at concentrations in the investigated sediments (appr. 1 mg/l NO3-). This study indicates that MPB biomass increase has a general, significantly positive effect on total bacterial and denitrifier abundances, with stimulation or inhibition of specific bacterial groups that however do not result in a re-structured community

    Distribution of 16S rRNA gene OTUs.

    No full text
    <p>A-C, Venn diagrams representing the number of observed OTUs for the 16S rRNA gene. Comparisons are shown between (A) HBM replicates, (B) LBM replicates, (C) HBM (n = 2) and LBM (n = 2) samples. The number and percentage of unique and shared OTUs are given. D, The relative abundance of abundant 16S rRNA derived OTUs, grouped per phylum, from HBM (n = 2) and LBM (n = 2) sediment samples. Sequences were assigned to OTUs using sequence dissimilarity treshold of 3%. All OTUs with a relative abundance below 1% were grouped. Uncl. stands for unclassified.</p

    Dissimilarity in community membership (Jaccard) and structure (Bray-Curtis) between both estuarine sediment types (HBM and LBM) based on 16S rRNA, <i>nirK</i> and <i>nirS</i> genes.

    No full text
    <p>Three different levels were assessed: total community (all), abundant and non-abundant fraction. An OTU was defined as abundant when its relative abundance was larger than 1%. Permanova analyses were performed to determine significant differences in community structure and membership.</p><p>Dissimilarity in community membership (Jaccard) and structure (Bray-Curtis) between both estuarine sediment types (HBM and LBM) based on 16S rRNA, <i>nirK</i> and <i>nirS</i> genes.</p
    corecore