23 research outputs found

    Using the Theoretical Domains Framework (TDF) to understand adherence to multiple evidence-based indicators in primary care : a qualitative study

    Get PDF
    BACKGROUND: There are recognised gaps between evidence and practice in general practice, a setting posing particular implementation challenges. We earlier screened clinical guideline recommendations to derive a set of 'high-impact' indicators based upon criteria including potential for significant patient benefit, scope for improved practice and amenability to measurement using routinely collected data. Here, we explore health professionals' perceived determinants of adherence to these indicators, examining the degree to which determinants were indicator-specific or potentially generalisable across indicators. METHODS: We interviewed 60 general practitioners, practice nurses and practice managers in West Yorkshire, the UK, about adherence to four indicators: avoidance of risky prescribing; treatment targets in type 2 diabetes; blood pressure targets in treated hypertension; and anticoagulation in atrial fibrillation. Interview questions drew upon the Theoretical Domains Framework (TDF). Data were analysed using framework analysis. RESULTS: Professional role and identity and environmental context and resources featured prominently across all indicators whilst the importance of other domains, for example, beliefs about consequences, social influences and knowledge varied across indicators. We identified five meta-themes representing more general organisational and contextual factors common to all indicators. CONCLUSIONS: The TDF helped elicit a wide range of reported determinants of adherence to 'high-impact' indicators in primary care. It was more difficult to pinpoint which determinants, if targeted by an implementation strategy, would maximise change. The meta-themes broadly underline the need to align the design of interventions targeting general practices with higher level supports and broader contextual considerations. However, our findings suggest that it is feasible to develop interventions to promote the uptake of different evidence-based indicators which share common features whilst also including content-specific adaptations

    Climate change effects on agriculture: Economic responses to biophysical shocks

    Get PDF
    Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change's representative concentration pathway with end-of-century radiative forcing of 8.5 W/m2. The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change

    Non-technical Skills in Healthcare

    Get PDF
    AbstractNon-technical Skills (NTS) are a set of generic cognitive and social skills, exhibited by individuals and teams, that support technical skills when performing complex tasks. Typical NTS training topics include performance shaping factors, planning and preparation for complex tasks, situation awareness, perception of risk, decision-making, communication, teamwork and leadership. This chapter provides a framework for understanding these skills in theory and practice, how they interact, and how they have been applied in healthcare, as well as avenues for future research

    Land-use change trajectories up to 2050: Insights from a global agro-economic model comparison

    No full text
    Changes in agricultural land use have important implications for environmental services. Previous studies of agricultural land-use futures have been published indicating large uncertainty due to different model assumptions and methodologies. In this article we present a first comprehensive comparison of global agro-economic models that have harmonized drivers of population, GDP, and biophysical yields. The comparison allows us to ask two research questions: (1) How much cropland will be used under different socioeconomic and climate change scenarios? (2) How can differences in model results be explained? The comparison includes four partial and six general equilibrium models that differ in how they model land supply and amount of potentially available land. We analyze results of two different socioeconomic scenarios and three climate scenarios (one with constant climate). Most models (7 out of 10) project an increase of cropland of 10-25% by 2050 compared to 2005 (under constant climate), but one model projects a decrease. Pasture land expands in some models, which increase the treat on natural vegetation further. Across all models most of the cropland expansion takes place in South America and sub-Saharan Africa. In general, the strongest differences in model results are related to differences in the costs of land expansion, the endogenous productivity responses, and the assumptions about potential cropland

    Agriculture and climate change in global scenarios: Why don't the models agree

    No full text
    Agriculture is unique among economic sectors in the nature of impacts from climate change. The production activity that transforms inputs into agricultural outputs involves direct use of weather inputs (temperature, solar radiation available to the plant, and precipitation). Previous studies of the impacts of climate change on agriculture have reported substantial differences in outcomes such as prices, production, and trade arising from differences in model inputs and model specification. This article presents climate change results and underlying determinants from a model comparison exercise with 10 of the leading global economic models that include significant representation of agriculture. By harmonizing key drivers that include climate change effects, differences in model outcomes were reduced. The particular choice of climate change drivers for this comparison activity results in large and negative productivity effects. All models respond with higher prices. Producer behavior differs by model with some emphasizing area response and others yield response. Demand response is least important. The differences reflect both differences in model specification and perspectives on the future. The results from this study highlight the need to more fully compare the deep model parameters, to generate a call for a combination of econometric and validation studies to narrow the degree of uncertainty and variability in these parameters and to move to Monte Carlo type simulations to better map the contours of economic uncertainty

    The future of food demand: Understanding differences in global economic models

    No full text
    Understanding the capacity of agricultural systems to feed the world population under climate change requires projecting future food demand. This article reviews demand modeling approaches from 10 global economic models participating in the Agricultural Model Intercomparison and Improvement Project (AgMIP). We compare food demand projections in 2050 for various regions and agricultural products under harmonized scenarios of socioeconomic development, climate change, and bioenergy expansion. In the reference scenario (SSP2), food demand increases by 59-98% between 2005 and 2050, slightly higher than the most recent FAO projection of 54% from 2005/2007. The range of results is large, in particular for animal calories (between 61% and 144%), caused by differences in demand systems specifications, and in income and price elasticities. The results are more sensitive to socioeconomic assumptions than to climate change or bioenergy scenarios. When considering a world with higher population and lower economic growth (SSP3), consumption per capita drops on average by 9% for crops and 18% for livestock. The maximum effect of climate change on calorie availability is -6% at the global level, and the effect of biofuel production on calorie availability is even smaller

    Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison

    No full text
    Recent studies assessing plausible futures for agricultural markets and global food security have had contradictory outcomes. To advance our understanding of the sources of the differences, 10 global economic models that produce long-term scenarios were asked to compare a reference scenario with alternate socioeconomic, climate change, and bioenergy scenarios using a common set of key drivers. Several key conclusions emerge from this exercise: First, for a comparison of scenario results to be meaningful, a careful analysis of the interpretation of the relevant model variables is essential. For instance, the use of "real world commodity prices" differs widely across models, and comparing the prices without accounting for their different meanings can lead to misleading results. Second, results suggest that, once some key assumptions are harmonized, the variability in general trends across models declines but remains important. For example, given the common assumptions of the reference scenario, models show average annual rates of changes of real global producer prices for agricultural products on average ranging between -0.4% and +0.7% between the 2005 base year and 2050. This compares to an average decline of real agricultural prices of 4% p.a. between the 1960s and the 2000s. Several other common trends are shown, for example, relating to key global growth areas for agricultural production and consumption. Third, differences in basic model parameters such as income and price elasticities, sometimes hidden in the way market behavior is modeled, result in significant differences in the details. Fourth, the analysis shows that agro-economic modelers aiming to inform the agricultural and development policy debate require better data and analysis on both economic behavior and biophysical drivers. More interdisciplinary modeling efforts are required to cross-fertilize analyses at different scales
    corecore