226 research outputs found

    Charge transfer fluctuation, d−d-wave superconductivity, and the B1gB_{1g} Raman phonon in the Cuprates: A detailed analysis

    Full text link
    The Raman spectrum of the B1gB_{1g} phonon in the superconducting cuprate materials is investigated theoretically in detail in both the normal and superconducting phases, and is contrasted with that of the A1gA_{1g} phonon. A mechanism involving the charge transfer fluctuation between the two oxygen ions in the CuO2_2 plane coupled to the crystal field perpendicular to the plane is discussed and the resulting electron-phonon coupling is evaluated. Depending on the symmetry of the phonon the weight of different parts of the Fermi surface in the coupling is different. This provides the opportunity to obtain information on the superconducting gap function at certain parts of the Fermi surface. The lineshape of the phonon is then analyzed in detail both in the normal and superconducting states. The Fano lineshape is calculated in the normal state and the change of the linewidth with temperature below Tc_{c} is investigated for a dx2−y2d_{x^{2}-y^{2}} pairing symmetry. Excellent agreement is obtained for the B1gB_{1g} phonon lineshape in YBa2_{2}Cu3_{3}O7_{7}. These experiments, however, can not distinguish between dx2−y2d_{x^{2}-y^{2}} and a highly anisotropic ss-wave pairing.Comment: Revtex, 21 pages + 4 postscript figures appended, tp

    Affordable Developing Country Server/Workstation Network

    Get PDF
    We propose a method to provide people of low income in developing countries access to sufficiently current personal computing luxuries.Ope

    Small and large polarons in nickelates, manganites, and cuprates

    Full text link
    By comparing the optical conductivities of La_{1.67}Sr_{0.33}NiO_{4} (LSNO), Sr_{1.5}La_{0.5}MnO_4 (SLMO), Nd_2CuO_{4-y} (NCO), and Nd_{1.96}Ce_{0.04}CuO_{4} (NCCO), we have identified a peculiar behavior of polarons in this cuprate family. While in LSNO and SLMO small polarons localize into ordered structures below a transition temperature, in those cuprates the polarons appear to be large, and at low T their binding energy decreases. This reflects into an increase of the polaron radius, which may trigger coherent transport.Comment: File latex, 15 p. incl. 4 Figs. epsf, to appear on the Journal of Superconductivity - Proc. "Stripes 1996" - Roma Dec 199

    Temperature dependence of the EPR linewidth of Yb3+ - ions in Y0.99Yb0.01Ba2Cu3OX compounds: Evidence for an anomaly near TC

    Full text link
    Electron paramagnetic resonance experiments on doped Yb3+ ions in YBaCuO compounds with different oxygen contents have been made. We have observed the strong temperature dependence of the EPR linewidth in the all investigated samples caused by the Raman processes of spin-lattice relaxation. The spin-lattice relaxation rate anomaly revealed near TC in the superconducting species can be assigned to the phonon density spectrum changesComment: 10 pages, 4 figures Renewed versio

    Anomalous Self-Energy Effects of the B_1g Phonon in Y_{1-x}(Pr,Ca)_xBa_2Cu_3O_7 Films

    Full text link
    In Raman spectra of cuprate superconductors the gap shows up both directly, via a redistribution of the electronic background, the so-called "2Delta peaks", and indirectly, e.g. via the renormalization of phononic excitations. We use a model that allows us to study the redistribution and the related phonon self-energy effects simultaneously. We apply this model to the B_1g phonon of Y_{1-x}(Pr,Ca)_xBa_2Cu_3O_7 films, where Pr or Ca substitution enables us to investigate under- and overdoped samples. While various self-energy effects can be explained by the strength and energy of the 2\Delta peaks, anomalies remain. We discuss possible origins of these anomalies.Comment: 6 pages including 4 figure

    Charge Ordering and Phase Competition in the Layered Perovskite Lasr2mn2o7

    Full text link
    Charge-lattice fluctuations are observed in the layered perovskite manganite LaSr2Mn2O7 by Raman spectroscopy as high as 340 K and with decreasing temperature they become static and form a charge ordered (CO) phase below TCO=210 K. In the static regime, superlattice reflections are observed through neutron and x-ray diffraction with a propagation vector (h+1/4,k-1/4,l). Crystallographic analysis of the CO state demonstrates that the degree of charge and orbital ordering in this manganite is weaker than the charge ordering in three dimensional perovskite manganites. A TN=170K a type-A antiferromagnetism (AF) develops and competes with the charge ordering, that eventually melts below T*=100K. High resolution diffraction measurements suggest that that CO- and AF-states do not coincide within the same region in the material but rather co-exist as separate phases. The transition to type-A antiferromagnetism at lower temperatures is characterized by the competition between these two phases.Comment: 9 pages, 6 figure

    Theory for Electron-Doped Cuprate Superconductors: d-wave symmetry order parameter

    Full text link
    Using as a model the Hubbard Hamiltonian we determine various basic properties of electron-doped cuprate superconductors like Nd2−xCexCuO4{Nd}_{2-x}{Ce}_{x}{CuO}_{4} and Pr2−xCexCuO4{Pr}_{2-x}{Ce}_{x}{CuO}_{4} for a spin-fluctuation-induced pairing mechanism. Most importantly we find a narrow range of superconductivity and like for hole-doped cuprates dx2−y2d_{x^{2}-y^{2}} - symmetry for the superconducting order parameter. The superconducting transition temperatures Tc(x)T_{c}(x) for various electron doping concentrations xx are calculated to be much smaller than for hole-doped cuprates due to the different Fermi surface and a flat band well below the Fermi level. Lattice disorder may sensitively distort the symmetry dx2−y2d_{x^{2}-y^{2}} via electron-phonon interaction

    Raman light scattering study and microstructural analysis of epitaxial films of the electron-doped superconductor La_{2-x}Ce_{x}CuO_{4}

    Full text link
    We present a detailed temperature-dependent Raman light scattering study of optical phonons in molecular-beam-epitaxy-grown films of the electron-doped superconductor La_{2-x}Ce_{x}CuO_{4} close to optimal doping (x ~ 0.08, T_c = 29 K and x ~ 0.1, T_c = 27 K). The main focus of this work is a detailed characterization and microstructural analysis of the films. Based on micro-Raman spectroscopy in combination with x-ray diffraction, energy-dispersive x-ray analysis, and scanning electron microscopy, some of the observed phonon modes can be attributed to micron-sized inclusions of Cu_{2}O. In the slightly underdoped film (x ~ 0.08), both the Cu_{2}O modes and others that can be assigned to the La_{2-x}Ce_{x}CuO_{4} matrix show pronounced softening and narrowing upon cooling below T ~ T_c. Based on control measurements on commercial Cu_{2}O powders and on a comparison to prior Raman scattering studies of other high-temperature superconductors, we speculate that proximity effects at La_{2-x}Ce_{x}CuO_{4}/Cu_{2}O interfaces may be responsible for these anomalies. Experiments on the slightly overdoped La_{2-x}Ce_{x}CuO_{4} film (x ~ 0.1) did not reveal comparable phonon anomalies.Comment: 7 pages, 8 figure

    4f-spin dynamics in La(2-x-y)Sr(x)Nd(y)CuO(4)

    Full text link
    We have performed inelastic magnetic neutron scattering experiments on La(2-x-y)Sr(x)Nd(y)CuO(4) in order to study the Nd 4f-spin dynamics at low energies. In all samples we find at high temperatures a quasielastic line (Lorentzian) with a line width which decreases on lowering the temperature. The temperature dependence of the quasielastic line width Gamma/2(T) can be explained with an Orbach-process, i.e. a relaxation via the coupling between crystal field excitations and phonons. At low temperatures the Nd-4f magnetic response S(Q,omega) correlates with the electronic properties of the CuO(2)-layers. In the insulator La(2-y)Nd(y)CuO(4) the quasielastic line vanishes below 80 K and an inelastic excitation occurs. This directly indicates the splitting of the Nd3+ ground state Kramers doublet due to the static antiferromagnetic order of the Cu moments. In La(1.7-x)Sr(x)Nd(0.3)CuO(4) with x = 0.12, 0.15 and La(1.4-x)Sr(x)Nd(0.6)CuO(4) with x = 0.1, 0.12, 0.15, 0.18 superconductivity is strongly suppressed. In these compounds we observe a temperature independent broad quasielastic line of Gaussian shape below T about 30 K. This suggests a distribution of various internal fields on different Nd sites and is interpreted in the frame of the stripe model. In La(1.8-y)Sr(0.2)Nd(y)CuO(4) (y = 0.3, 0.6) such a quasielastic broadening is not observed even at lowest temperature.Comment: 8 pages, 10 figures included, to appear in Phys. Rev.

    Polaronic optical absorption in electron-doped and hole-doped cuprates

    Full text link
    Polaronic features similar to those previously observed in the photoinduced spectra of cuprates have been detected in the reflectivity spectra of chemically doped parent compounds of high-critical-temperature superconductors, both nn-type and pp-type. In Nd2_2CuO4−y_{4-y} these features, whose intensities depend both on doping and temperature, include local vibrational modes in the far infrared and a broad band centered at ∼\sim 1000 cm−1^{-1}. The latter band is produced by the overtones of two (or three) local modes and is well described in terms of a small-polaron model, with a binding energy of about 500 cm−1^{-1}. Most of the above infrared features are shown to survive in the metallic phase of Nd2−x_{2-x}Cex_xCu04−y_{4-y}, Bi2_2Sr2_2CuO6_6, and YBa2_2Cu3_3O7−y_{7-y}, where they appear as extra-Drude peaks. The occurrence of polarons is attributed to local modes strongly coupled to carriers, as shown by a comparison with tunneling results.Comment: File latex, 31 p., submitted to Physical Review B. Figures may be faxed upon reques
    • …
    corecore