12 research outputs found

    The Indian cobra reference genome and transcriptome enables comprehensive identification of venom toxins

    Get PDF
    Snakebite envenoming is a serious and neglected tropical disease that kills ~100,000 people annually. High-quality, genome-enabled comprehensive characterization of toxin genes will facilitate development of effective humanized recombinant antivenom. We report a de novo near-chromosomal genome assembly of Naja naja, the Indian cobra, a highly venomous, medically important snake. Our assembly has a scaffold N50 of 223.35 Mb, with 19 scaffolds containing 95% of the genome. Of the 23,248 predicted protein-coding genes, 12,346 venom-gland-expressed genes constitute the \u27venom-ome\u27 and this included 139 genes from 33 toxin families. Among the 139 toxin genes were 19 \u27venom-ome-specific toxins\u27 (VSTs) that showed venom-gland-specific expression, and these probably encode the minimal core venom effector proteins. Synthetic venom reconstituted through recombinant VST expression will aid in the rapid development of safe and effective synthetic antivenom. Additionally, our genome could serve as a reference for snake genomes, support evolutionary studies and enable venom-driven drug discovery

    Strategies in 'snake venomics' aiming at an integrative view of compositional, functional, and immunological characteristics of venoms

    Get PDF
    This work offers a general overview on the evolving strategies for the proteomic analysis of snake venoms, and discusses how these may be combined through diverse experimental approaches with the goal of achieving a more comprehensive knowledge on the compositional, toxic, and immunological characteristics of venoms. Some recent developments in this field are summarized, highlighting how strategies have evolved from the mere cataloguing of venom components (proteomics/venomics), to a broader exploration of their immunological (antivenomics) and functional (toxicovenomics) characteristics. Altogether, the combination of these complementary strategies is helping to build a wider, more integrative view of the life-threatening protein cocktails produced by venomous snakes, responsible for thousands of deaths every year.Ministerio de Economía y Competitividad/[BFU2013-42833-P]//EspañaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto Clodomiro Picado (ICP

    The Bold and the Beautiful: a Neurotoxicity Comparison of New World Coral Snakes in the Micruroides and Micrurus Genera and Relative Neutralization by Antivenom

    No full text
    Coral snake envenomations are well characterized to be lethally neurotoxic. Despite this, few multispecies, neurotoxicity and antivenom efficacy comparisons have been undertaken and only for the Micrurus genus; Micruroides has remained entirely uninvestigated. As the USA's supplier of antivenom has currently stopped production, alternative sources need to be explored. The Mexican manufacturer Bioclon uses species genetically related to USA species, thus we investigated the efficacy against Micrurus fulvius (eastern coral snake), the main species responsible for lethal envenomations in the USA as well as additional species from the Americas. The use of Coralmyn® coral snake antivenom was effective in neutralizing the neurotoxic effects exhibited by the venom of M. fulvius but was ineffective against the venoms of Micrurus tener, Micrurus spixii, Micrurus pyrrhocryptus, and Micruroides euryxanthus. Our results suggest that the Mexican antivenom may be clinically useful for the treatment of M. fulvius in the USA but may be of only limited efficacy against the other species studied
    corecore