279 research outputs found

    Wettability-independent droplet transport by \emph{Bendotaxis}

    Full text link
    We demonstrate \textit{bendotaxis}, a novel mechanism for droplet self-transport at small scales. A combination of bending and capillarity in a thin channel causes a pressure gradient that, in turn, results in the spontaneous movement of a liquid droplet. Surprisingly, the direction of this motion is always the same, regardless of the wettability of the channel. We use a combination of experiments at a macroscopic scale and a simple mathematical model to study this motion, focussing in particular on the time scale associated with the motion. We suggest that \emph{bendotaxis} may be a useful means of transporting droplets in technological applications, for example in developing self-cleaning surfaces, and discuss the implications of our results for such applications.Comment: 5 pages, 4 figures. Supplementary Information available on reques

    A model of the weathering crust and microbial activity on an ice-sheet surface

    Get PDF
    Shortwave radiation penetrating beneath an ice-sheet surface can cause internal melting and the formation of a near-surface porous layer known as the weathering crust, a dynamic hydrological system that provides home to impurities and microbial life. We develop a mathematical model, incorporating thermodynamics and population dynamics, for the evolution of such layers. The model accounts for conservation of mass and energy, for internal and surface-absorbed radiation, and for logistic growth of a microbial species mediated by nutrients that are sourced from the melting ice. It also accounts for potential melt–albedo and microbe–albedo feedbacks, through the dependence of the absorption coefficient on the porosity or microbial concentration. We investigate one-dimensional steadily melting solutions of the model, which give rise to predictions for the weathering crust depth, water content, melt rate, and microbial abundance, depending on a number of parameters. In particular, we examine how these quantities depend on the forcing energy fluxes, finding that the relative amounts of shortwave (surface-penetrating) radiation and other heat fluxes are particularly important in determining the structure of the weathering crust. The results explain why weathering crusts form and disappear under different forcing conditions and suggest a range of possible changes in behaviour in response to climate change

    A Mathematical Model for Flash Sintering

    Get PDF
    A mathematical model is presented for the Joule heating that occurs in a ceramic powder compact during the process of flash sintering. The ceramic is assumed to have an electrical conductivity that increases with temperature, and this leads to the possibility of runaway heating that could facilitate and explain the rapid sintering seen in experiments. We consider reduced models that are sufficiently simple to enable concrete conclusions to be drawn about the mathematical nature of their solutions. In particular we discuss how different local and non-local reaction terms, which arise from specified experimental conditions of fixed voltage and current, lead to thermal runaway or to stable conditions. We identify incipient thermal runaway as a necessary condition for the flash event, and hence identify the conditions under which this is likely to occur.Comment: 14 pages, 9 figure

    Tidal controls on the lithospheric thickness and topography of Io from magmatic segregation and volcanism modelling

    Full text link
    Tidal heating is expected to impart significant, non-spherically-symmetric structure to Jupiter's volcanic moon Io. A signature of spatially variable tidal heating is generally sought in observations of surface heat fluxes or volcanic activity, an exploration complicated by the transient nature of volcanic events. The thickness of the lithosphere is expected to change over much longer timescales, and so may provide a robust link between surface observations and the tidal heating distribution. To predict long-wavelength lithospheric thickness variations, we couple three-dimensional tidal heating calculations to a suite of one-dimensional models of magmatic segregation and volcanic eruption. We find that the lithospheric thickness could either be correlated with the radially integrated heating rate, or weakly anti-correlated. Lithospheric thickness is correlated with radially integrated heating rate if magmatic intrusions form at a constant rate in the lithosphere, but is weakly anti-correlated if intrusions form at a rate proportional to the flux through volcanic conduits. Utilising a simple isostasy model we show how variations in lithospheric thickness can predict long-wavelength topography. The relationship between lithospheric thickness and topography depends on the difference in chemical density between the lithosphere and mantle. Assuming that this difference is small, we find that long-wavelength topography anti-correlates with lithospheric thickness. These results will allow future observations to critically evaluate models for Io's lithospheric structure, and enable their use in constraining the distribution of tidal heating.Comment: Published in Icaru

    Relationship between Greenland Ice Sheet surface speed and modeled effective pressure

    Get PDF
    Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Earth Surface 123 (2018): 2258-2278, doi:10.1029/2017JF004581.We use a numerical subglacial hydrology model and remotely sensed observations of Greenland Ice Sheet surface motion to test whether the inverse relationship between effective pressure and regional melt season surface speeds observed at individual sites holds on a regional scale. The model is forced with daily surface runoff estimates for 2009 and 2010 across an ~8,000‐km2 region on the western margin. The overall subglacial drainage system morphology develops similarly in both years, with subglacial channel networks growing inland from the ice sheet margin and robust subglacial pathways forming over bedrock ridges. Modeled effective pressures are compared to contemporaneous regional surface speeds derived from TerraSAR‐X imagery to investigate spatial relationships. Our results show an inverse spatial relationship between effective pressure and ice speed in the mid‐melt season, when surface speeds are elevated, indicating that effective pressure is the dominant control on surface velocities in the mid‐melt season. By contrast, in the early and late melt seasons, when surface speeds are slower, effective pressure and surface speed have a positive relationship. Our results suggest that outside of the mid‐melt season, the influence of effective pressures on sliding speeds may be secondary to the influence of driving stress and spatially variable bed roughness.National Aeronautics and Space Administration (NASA). Grant Number: NXX10AI30G National Science Foundation (NSF) American Geophysical Union Horton Research Grant; National Science Foundation Graduate Research Fellowship; National Science Foundation's Office of Polar Programs (NSF‐OPP) Grant Numbers: PLR‐1418256, ARC‐1023364, ARC‐0520077; Woods Hole Oceanographic Institution's Ocean and Climate Change Institute (OCCI)2019-03-2

    Tipping point in ice-sheet grounding-zone melting due to ocean water intrusion

    Get PDF
    Marine ice sheets are highly sensitive to submarine melting in their grounding zones, where they transition between grounded and floating ice. Recently published studies of the complex hydrography of grounding zones suggest that warm ocean water can intrude large distances beneath the ice sheet, with dramatic consequences for ice dynamics. Here we develop a model to capture the feedback between intruded ocean water, the melting it induces and the resulting changes in ice geometry. We reveal a sensitive dependence of the grounding-zone dynamics on this feedback: as the grounding zone widens in response to melting, both temperature and flow velocity in the region increase, further enhancing melting. We find that increases in ocean temperature can lead to a tipping point being passed, beyond which ocean water intrudes in an unbounded manner beneath the ice sheet, via a process of runaway melting. Additionally, this tipping point may not be easily detected with early warning indicators. Although completely unbounded intrusions are not expected in practice, this suggests a mechanism for dramatic changes in grounding-zone behaviour, which are not currently included in ice-sheet models. We consider the susceptibility of present-day Antarctic grounding zones to this process, finding that both warm and cold water cavity ice shelves may be vulnerable. Our results point towards a stronger sensitivity of ice-sheet melting, and thus higher sea-level-rise contribution in a warming climate, than has been previously understood

    Enthalpy balance theory unifies diverse glacier surge behaviour

    Get PDF
    It is commonly asserted that there are two distinct classes of glacier surges: slow, long-duration ‘Svalbard-type’ surges, triggered by a transition from cold- to warm-based conditions (thermal switching), and fast, shorter-duration ‘Alaska-type’ surges triggered by a reorganisation of the basal drainage system (hydraulic switching). This classification, however, reflects neither the diversity of surges in Svalbard and Alaska (and other regions), nor the fundamental dynamic processes underlying all surges. We argue that enthalpy balance theory offers a framework for understanding the spectrum of glacier surging behaviours while emphasising their essential dynamic unity. In this paper, we summarise enthalpy balance theory, illustrate its potential to explain so-called ‘Svalbard-type’ and ‘Alaska-type’ surges using a single set of principles, and show examples of a much wider range of glacier surge behaviour than previously observed. We then identify some future directions for research, including strategies for testing predictions of the theory against field and remote sensing data, and priorities for numerical model development

    Bendocapillary Instability of Liquid in a Flexible-Walled Channel

    Get PDF
    We study the bendocapillary instability of a liquid droplet that part fills a flexible walled channel. Inspired by experiments in which a periodic pattern emerges as droplets of liquid are condensed slowly into deformable microchannels, we develop a mathematical model of this instability. We describe equilibria of the system, and use a combination of numerical methods and asymptotic analysis in the limit of small channel wall deflections, to elucidate the key features of this instability. We find that configurations are unstable to perturbations of sufficiently small wavenumber regardless of parameter values, that the growth rate of the instability is highly sensitive to the volume of liquid in the channel, and that both wetting and non-wetting configurations are susceptible to the instability in the same channel. Insight into novel interfacial instabilities opens the possibility for their control and thus exploitation in processes such as microfabrication

    Assessing Benthic Responses to Fishing Disturbance Over Broad Spatial Scales That Incorporate High Environmental Variation

    Get PDF
    Marine benthic habitats are modified by a number of human-related disturbances. When these disturbances occur at large scales over areas of high environmental variability, it is difficult to assess impacts using metrics such as species richness or individual species distributions because of varying species-specific responses to environmental drivers (e.g., exposure, sediment, temperature). Impact assessment can also be problematic when assessed at broad spatial scales because of regional heterogeneity of species pools. Even when effects on individual species can be detected, it is difficult to upscale from individual species to ecosystem scale effects. Here, we use a functional group approach to assess broad scale patterns in ecological processes with respect to fishing and environmental drivers. We used data from field surveys of benthic communities from two large, widely separated areas in New Zealand’s EEZ (Chatham Rise and Challenger Plateau). We assigned 828 taxonomic units (most identified to species) into functional groups related to important ecosystem processes and likely sensitivity to, and recovery from, fishing disturbance to the seafloor. These included: opportunistic early colonists; substrate stabilisers (e.g., tube mat formers); substrate destabilisers; shell hash-creating species; emergent epifauna; burrowers; and predators and scavengers. Effects of fishing disturbance on benthic functional composition were observed, even at this broad spatial scale. Responses varied between functional groups, with some being tolerant of fishing impacts and others showing rapid declines with minimal fishing effort. The use of a functional group approach facilitates assessment of impacts across regions and species, allowing for improved generalisations of impacts to inform management and decision making

    Spin Chirality in a Molecular Dysprosium Triangle: the Archetype of the Non-Collinear Ising Model

    Full text link
    Single crystal magnetic studies combined with a theoretical analysis show that cancellation of the magnetic moments in the trinuclear Dy3+ cluster [Dy3(OH)2L3Cl(H2O)5]Cl3, resulting in a non-magnetic ground doublet, originates from the non-collinearity of the single ion easy axes of magnetization of the Dy3+ ions that lie in the plane of the triangle at 120 (deg.) one from each other. This gives rise to a peculiar chiral nature of the ground non-magnetic doublet and to slow relaxation of the magnetization with abrupt accelerations at the crossings of the discrete energy levels.Comment: 4 pages and 5 figure
    • 

    corecore