459 research outputs found

    The Gaussian Plasma Lens in Astrophysics. Refraction

    Get PDF
    We consider the geometrical optics for refraction of a distant radio source by an interstellar plasma lens, with application to a lens with a Gaussian electron column density profile. The refractive properties of the lens are specified completely by a dimensionless parameter, alpha, which is a function of the wavelength of observation, the lens' electron column density, the lens-observer distance, and the transverse diameter of the lens. Relative motion of the observer and lens produces modulations in the source's light curve. Plasma lenses are diverging so the light curve displays a minimum, when the lens is on-axis, surrounded by enhancements above the unlensed flux density. Lensing can also produce caustics, multiple imaging, and angular position wander of the background source. If caustics are formed, the separation of the outer caustics can constrain alpha, while the separation of the inner caustics can constrain the size of the lens. We apply our analysis to 0954+654, a source for which we can identify caustics in its light curve, and 1741-038, for which polarization observations were obtained during and after the scattering event. We find general agreement between modelled and observed light curves at 2.25 GHz, but poor agreement at 8.1 GHz. The discrepancies may result from a combination of lens substructure or anisotropic shape, a lens that only grazes the source, or unresolved source substructure. Our analysis places the following constraints on the lenses: Toward 0954+654 (1741-038) the lens was 0.38 AU (0.065 AU) in diameter, with a peak column density of 0.24 pc cm^{-3} (1E-4 pc cm^{-3}) and an electron density of 1E5 cm^{-3} (300 cm^{-3}). The angular wander caused by the lens was 250 mas (0.4 mas) at 2.25 GHz. For 1741-038, we place an upper limit of 100 mG on the lens' magnetic field.Comment: 26 pages, LaTeX2e using AASTeX macro aaspp4, 11 PostScript figures; to be published in Ap

    The spectrum of small-scale density fluctuations in the solar wind

    Get PDF
    Interplanetary scintillation observations at frequencies between 74 and 1400 MHz and solar elongations in the range 10–90° are combined to determine the form of the wavenumber spectrum of electron density fluctuations in the range 10⁻³ < k < 10⁻Âč/km (where k = 2π/λ). The data are best explained by a spectrum in which there is a genuine scale-length; they are not consistent with a simple power-law spectrum. This suggests that turbulence may be less important than some kind of plasma instability in generating small-scale density fluctuations. The relevance of these conclusions to the use of IPS for determining radio source structure is discussed

    Modeling of Interstellar Scintillation Arcs from Pulsar B1133+16

    Get PDF
    The parabolic arc phenomenon visible in the Fourier analysis of the scintillation spectra of pulsars provides a new method of investigating the small scale structure in the ionized interstellar medium (ISM). We report archival observations of the pulsar B1133+16 showing both forward and reverse parabolic arcs sampled over 14 months. These features can be understood as the mutual interference between an assembly of discrete features in the scattered brightness distribution. By model-fitting to the observed arcs at one epoch we obtain a ``snap-shot'' estimate of the scattered brightness, which we show to be highly anisotropic (axial ratio >10:1), to be centered significantly off axis and to have a small number of discrete maxima, which are coarser the speckle expected from a Kolmogorov spectrum of interstellar plasma density. The results suggest the effects of highly localized discrete scattering regions which subtend 0.1-1 mas, but can scatter (or refract) the radiation by angles that are five or more times larger.Comment: 14 pages, 4 figures, submitted to Astrophysical Journa

    Electric field representation of pulsar intensity spectra

    Get PDF
    Pulsar dynamic spectra exhibit high visibility fringes arising from interference between scattered radio waves. These fringes may be random or highly ordered patterns, depending on the nature of the scattering or refraction. Here we consider the possibility of decomposing pulsar dynamic spectra -- which are intensity measurements -- into their constituent scattered waves, i.e. electric field components. We describe an iterative method of achieving this decomposition and show how the algorithm performs on data from the pulsar B0834+06. The match between model and observations is good, although not formally acceptable as a representation of the data. Scattered wave components derived in this way are immediately useful for qualitative insights into the scattering geometry. With some further development this approach can be put to a variety of uses, including: imaging the scattering and refracting structures in the interstellar medium; interstellar interferometric imaging of pulsars at very high angular resolution; and mitigating pulse arrival time fluctuations due to interstellar scattering.Comment: 7 Pages, 2 Figures, revised version, accepted by MNRA

    The Millisecond Radio Sky: Transients from a Blind Single Pulse Search

    Full text link
    We present the results of a search for transient radio bursts of between 0.125 and 32 millisecond duration in two archival pulsar surveys of intermediate galactic latitudes with the Parkes multibeam receiver. Fourteen new neutron stars have been discovered, seven of which belong to the recently identified "rotating radio transients" (RRATs) class. Here we describe our search methodology, and discuss the new detections in terms of how the RRAT population relates to the general population of pulsars. The new detections indicate (1) that the galactic z-distribution of RRATs in the surveys closely resembles the distribution of pulsars, with objects up to 0.86 kpc from the galactic plane; (2) where measurable, the RRAT pulse widths are similar to that of individual pulses from pulsars of similar period, implying a similar beaming fraction; and (3) our new detections span a variety of nulling fractions, and thus we postulate that the RRATs may simply be nulling pulsars that are only "on" for less than a pulse period. Finally, the newly discovered object PSR J0941-39 may represent a link between pulsars and RRATs. This bizarre object was discovered as an RRAT, but in follow-up observations often appeared as a bright (~10 mJy) pulsar with a low nulling fraction. It is obvious therefore that a neutron star can oscillate between being an RRAT and a pulsar. Crucially, the sites of the RRAT pulses are coincident with the pulsar's emission, implying that the two emission mechanisms are linked, and that RRATs are not just pulsars observed from different orientations.Comment: 13 pages, 9 figures, accepted by MNRA

    Selection of radio pulsar candidates using artificial neural networks

    Full text link
    Radio pulsar surveys are producing many more pulsar candidates than can be inspected by human experts in a practical length of time. Here we present a technique to automatically identify credible pulsar candidates from pulsar surveys using an artificial neural network. The technique has been applied to candidates from a recent re-analysis of the Parkes multi-beam pulsar survey resulting in the discovery of a previously unidentified pulsar.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Society. 9 pages, 7 figures, and 1 tabl

    Theory of Parabolic Arcs in Interstellar Scintillation Spectra

    Full text link
    Our theory relates the secondary spectrum, the 2D power spectrum of the radio dynamic spectrum, to the scattered pulsar image in a thin scattering screen geometry. Recently discovered parabolic arcs in secondary spectra are generic features for media that scatter radiation at angles much larger than the rms scattering angle. Each point in the secondary spectrum maps particular values of differential arrival-time delay and fringe rate (or differential Doppler frequency) between pairs of components in the scattered image. Arcs correspond to a parabolic relation between these quantities through their common dependence on the angle of arrival of scattered components. Arcs appear even without consideration of the dispersive nature of the plasma. Arcs are more prominent in media with negligible inner scale and with shallow wavenumber spectra, such as the Kolmogorov spectrum, and when the scattered image is elongated along the velocity direction. The arc phenomenon can be used, therefore, to constrain the inner scale and the anisotropy of scattering irregularities for directions to nearby pulsars. Arcs are truncated by finite source size and thus provide sub micro arc sec resolution for probing emission regions in pulsars and compact active galactic nuclei. Multiple arcs sometimes seen signify two or more discrete scattering screens along the propagation path, and small arclets oriented oppositely to the main arc persisting for long durations indicate the occurrence of long-term multiple images from the scattering screen.Comment: 22 pages, 11 figures, submitted to the Astrophysical Journa

    DiFX: A software correlator for very long baseline interferometry using multi-processor computing environments

    Get PDF
    We describe the development of an FX style correlator for Very Long Baseline Interferometry (VLBI), implemented in software and intended to run in multi-processor computing environments, such as large clusters of commodity machines (Beowulf clusters) or computers specifically designed for high performance computing, such as multi-processor shared-memory machines. We outline the scientific and practical benefits for VLBI correlation, these chiefly being due to the inherent flexibility of software and the fact that the highly parallel and scalable nature of the correlation task is well suited to a multi-processor computing environment. We suggest scientific applications where such an approach to VLBI correlation is most suited and will give the best returns. We report detailed results from the Distributed FX (DiFX) software correlator, running on the Swinburne supercomputer (a Beowulf cluster of approximately 300 commodity processors), including measures of the performance of the system. For example, to correlate all Stokes products for a 10 antenna array, with an aggregate bandwidth of 64 MHz per station and using typical time and frequency resolution presently requires of order 100 desktop-class compute nodes. Due to the effect of Moore's Law on commodity computing performance, the total number and cost of compute nodes required to meet a given correlation task continues to decrease rapidly with time. We show detailed comparisons between DiFX and two existing hardware-based correlators: the Australian Long Baseline Array (LBA) S2 correlator, and the NRAO Very Long Baseline Array (VLBA) correlator. In both cases, excellent agreement was found between the correlators. Finally, we describe plans for the future operation of DiFX on the Swinburne supercomputer, for both astrophysical and geodetic science.Comment: 41 pages, 10 figures, accepted for publication in PAS

    Magnetar outbursts: an observational review

    Full text link
    Transient outbursts from magnetars have shown to be a key property of their emission, and one of the main way to discover new sources of this class. From the discovery of the first transient event around 2003, we now count about a dozen of outbursts, which increased the number of these strongly magnetic neutron stars by a third in six years. Magnetar outbursts might involve their multi-band emission resulting in an increased activity from radio to hard X-ray, usually with a soft X-ray flux increasing by a factor of 10-1000 with respect to the quiescent level. A connected X-ray spectral evolution is also often observed, with a spectral softening during the outburst decay. The flux decay times vary a lot from source to source, ranging from a few weeks to several years, as also the decay law which can be exponential-like, a power-law or even multiple power-laws can be required to model the flux decrease. We review here on the latest observational results on the multi-band emission of magnetars, and summarize one by one all the transient events which could be studied to date from these sources.Comment: 34 pages, 6 figures. Chapter of the Springer Book ASSP 7395 "High-energy emission from pulsars and their systems", proceeding of the Sant Cugat Forum on Astrophysics (12-16 April 2010). Review updated to January 201

    The High Time Resolution Universe Pulsar Survey I: System configuration and initial discoveries

    Full text link
    We have embarked on a survey for pulsars and fast transients using the 13-beam Multibeam receiver on the Parkes radio telescope. Installation of a digital backend allows us to record 400 MHz of bandwidth for each beam, split into 1024 channels and sampled every 64 us. Limits of the receiver package restrict us to a 340 MHz observing band centred at 1352 MHz. The factor of eight improvement in frequency resolution over previous multibeam surveys allows us to probe deeper into the Galactic plane for short duration signals such as the pulses from millisecond pulsars. We plan to survey the entire southern sky in 42641 pointings, split into low, mid and high Galactic latitude regions, with integration times of 4200, 540 and 270 s respectively. Simulations suggest that we will discover 400 pulsars, of which 75 will be millisecond pulsars. With ~30% of the mid-latitude survey complete, we have re-detected 223 previously known pulsars and discovered 27 pulsars, 5 of which are millisecond pulsars. The newly discovered millisecond pulsars tend to have larger dispersion measures than those discovered in previous surveys, as expected from the improved time and frequency resolution of our instrument.Comment: Updated author list. 10 pages, 7 figures. For publication in MNRA
    • 

    corecore