68 research outputs found
Amplitude Zeros in Radiative Decays of Scalar Particles
We study amplitude zeros in radiative decay processes with a photon or a
gluon emission of all possible scalar particles(e.g. scalar leptoquarks) which
may interact with the usual fermions in models beyond the standard model. For
the decays with a photon emission, the amplitudes clearly exhibit the
factorization property and the differential decay rates vanish at specific
values of a certain variable which are determined only by the electric charges
of the particles involved and independent of the particle masses and the
various couplings. For the decays with a gluon emission, even though the zeros
are washed away, the differential decay rates still have distinct minima. The
branching ratios as a function of leptoquark masses are presented for the
scalar leptoquark decays. We also comment on the decays of vector particles
into two fermions and a photon.Comment: Revtex, 17 pages + 6 figures (available upon request), Preprint,
OITS559. Several typos with tex file were correcte
Multiresolution analysis of active region magnetic structure and its correlation with the Mt. Wilson classification and flaring activity
Two different multi-resolution analyses are used to decompose the structure
of active region magnetic flux into concentrations of different size scales.
Lines separating these opposite polarity regions of flux at each size scale are
found. These lines are used as a mask on a map of the magnetic field gradient
to sample the local gradient between opposite polarity regions of given scale
sizes. It is shown that the maximum, average and standard deviation of the
magnetic flux gradient for alpha, beta, beta-gamma and beta-gamma-delta active
regions increase in the order listed, and that the order is maintained over all
length-scales. This study demonstrates that, on average, the Mt. Wilson
classification encodes the notion of activity over all length-scales in the
active region, and not just those length-scales at which the strongest flux
gradients are found. Further, it is also shown that the average gradients in
the field, and the average length-scale at which they occur, also increase in
the same order. Finally, there are significant differences in the gradient
distribution, between flaring and non-flaring active regions, which are
maintained over all length-scales. It is also shown that the average gradient
content of active regions that have large flares (GOES class 'M' and above) is
larger than that for active regions containing flares of all flare sizes; this
difference is also maintained at all length-scales.Comment: Accepted for publication in Solar Physic
Breaking CPT by mixed non-commutativity
The mixed component of the non-commutative parameter \theta_{\mu M}, where
\mu = 0,1,2,3 and M is an extra dimensional index may violate four-dimensional
CPT invariance. We calculate one and two-loop induced couplings of \theta_{\mu
5} with the four-dimensional axial vector current and with the CPT odd dim=6
operators starting from five-dimensional Yukawa and U(1) theories. The
resulting bounds from clock comparison experiments place a stringent constraint
on \theta_{\mu 5}, |\theta_{\mu 5}|^{-1/2} > 5\times 10^{11} GeV. The orbifold
projection and/or localization of fermions on a 3-brane lead to CPT-conserving
physics, in which case the constraints on \theta{\mu 5} are softened.Comment: 4 pages, latex, 1 figur
The Evolution of Sunspot Magnetic Fields Associated with a Solar Flare
Solar flares occur due to the sudden release of energy stored in
active-region magnetic fields. To date, the pre-cursors to flaring are still
not fully understood, although there is evidence that flaring is related to
changes in the topology or complexity of an active region's magnetic field.
Here, the evolution of the magnetic field in active region NOAA 10953 was
examined using Hinode/SOT-SP data, over a period of 12 hours leading up to and
after a GOES B1.0 flare. A number of magnetic-field properties and low-order
aspects of magnetic-field topology were extracted from two flux regions that
exhibited increased Ca II H emission during the flare. Pre-flare increases in
vertical field strength, vertical current density, and inclination angle of ~
8degrees towards the vertical were observed in flux elements surrounding the
primary sunspot. The vertical field strength and current density subsequently
decreased in the post-flare state, with the inclination becoming more
horizontal by ~7degrees. This behaviour of the field vector may provide a
physical basis for future flare forecasting efforts.Comment: Accepted for Publication in Solar Physics. 16 pages, 4 figure
Probing Lorentz and CPT violation with space-based experiments
Space-based experiments offer sensitivity to numerous unmeasured effects
involving Lorentz and CPT violation. We provide a classification of clock
sensitivities and present explicit expressions for time variations arising in
such experiments from nonzero coefficients in the Lorentz- and CPT-violating
Standard-Model Extension.Comment: 15 page
Deriving the mass of particles from Extended Theories of Gravity in LHC era
We derive a geometrical approach to produce the mass of particles that could
be suitably tested at LHC. Starting from a 5D unification scheme, we show that
all the known interactions could be suitably deduced as an induced symmetry
breaking of the non-unitary GL(4)-group of diffeomorphisms. The deformations
inducing such a breaking act as vector bosons that, depending on the
gravitational mass states, can assume the role of interaction bosons like
gluons, electroweak bosons or photon. The further gravitational degrees of
freedom, emerging from the reduction mechanism in 4D, eliminate the hierarchy
problem since generate a cut-off comparable with electroweak one at TeV scales.
In this "economic" scheme, gravity should induce the other interactions in a
non-perturbative way.Comment: 30 pages, 1 figur
Are Solar Active Regions with Major Flares More Fractal, Multifractal, or Turbulent than Others?
Multiple recent investigations of solar magnetic field measurements have
raised claims that the scale-free (fractal) or multiscale (multifractal)
parameters inferred from the studied magnetograms may help assess the eruptive
potential of solar active regions, or may even help predict major flaring
activity stemming from these regions. We investigate these claims here, by
testing three widely used scale-free and multiscale parameters, namely, the
fractal dimension, the multifractal structure function and its inertial-range
exponent, and the turbulent power spectrum and its power-law index, on a
comprehensive data set of 370 timeseries of active-region magnetograms (17,733
magnetograms in total) observed by SOHO's Michelson Doppler Imager (MDI) over
the entire Solar Cycle 23. We find that both flaring and non-flaring active
regions exhibit significant fractality, multifractality, and non-Kolmogorov
turbulence but none of the three tested parameters manages to distinguish
active regions with major flares from flare-quiet ones. We also find that the
multiscale parameters, but not the scale-free fractal dimension, depend
sensitively on the spatial resolution and perhaps the observational
characteristics of the studied magnetograms. Extending previous works, we
attribute the flare-forecasting inability of fractal and multifractal
parameters to i) a widespread multiscale complexity caused by a possible
underlying self-organization in turbulent solar magnetic structures, flaring
and non-flaring alike, and ii) a lack of correlation between the fractal
properties of the photosphere and overlying layers, where solar eruptions
occur. However useful for understanding solar magnetism, therefore, scale-free
and multiscale measures may not be optimal tools for active-region
characterization in terms of eruptive ability or, ultimately,for major
solar-flare prediction.Comment: 25 pages, 7 figures, 2 tables, Solar Phys., in pres
The Sudbury Neutrino Observatory
The Sudbury Neutrino Observatory is a second generation water Cherenkov
detector designed to determine whether the currently observed solar neutrino
deficit is a result of neutrino oscillations. The detector is unique in its use
of D2O as a detection medium, permitting it to make a solar model-independent
test of the neutrino oscillation hypothesis by comparison of the charged- and
neutral-current interaction rates. In this paper the physical properties,
construction, and preliminary operation of the Sudbury Neutrino Observatory are
described. Data and predicted operating parameters are provided whenever
possible.Comment: 58 pages, 12 figures, submitted to Nucl. Inst. Meth. Uses elsart and
epsf style files. For additional information about SNO see
http://www.sno.phy.queensu.ca . This version has some new reference
US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report
This white paper summarizes the workshop "U.S. Cosmic Visions: New Ideas in Dark Matter" held at University of Maryland on March 23-25, 2017
- …