105 research outputs found

    Electromagnetic shielding by thin periodic structures and the Faraday cage effect

    Get PDF
    Dans cette note, nous nous intĂ©ressons Ă  la diffraction des ondes Ă©lectromagnĂ©tiques (Ă©quations de Maxwell en rĂ©gime harmonique) par une nappe perforĂ©e plane constituĂ©e de petit obstacles parfaitement conducteurs placĂ©e Ă  l’interface entre deux milieux homogĂšnes. La taille des obstacles et la distance sĂ©parant deux obstacles consĂ©cutifs sont du mĂȘme ordre de grandeur ÎŽ, ÎŽ supposĂ© petit. En Ă©tudiant trois configurations modĂšles ((i) obstacles « discrets », (ii) fils parallĂšles, (iii) maillage constituĂ© de deux nappes de fils parallĂšles), nous montrons que la limite de la solution quand ÎŽ tend vers 0 dĂ©pend de la forme des obstacles constituant la nappe pĂ©riodique, le phĂ©nomĂšne de « cage de Faraday » n’apparaissant que dans le cas du maillage de fils

    Numerical Quadrature for Singular Integrals on Fractals

    Get PDF
    We present and analyse numerical quadrature rules for evaluating regular and singular integrals on self-similar fractal sets. The integration domain Γ⊂R^{n} is assumed to be the compact attractor of an iterated function system of contracting similarities satisfying the open set condition. Integration is with respect to any “invariant” (also known as “balanced” or “self-similar”) measure supported on Γ, including in particular the Hausdorff measure H^{d} restricted to Γ, where d is the Hausdorff dimension of Γ. Both single and double integrals are considered. Our focus is on composite quadrature rules in which integrals over Γ are decomposed into sums of integrals over suitable partitions of Γ into self-similar subsets. For certain singular integrands of logarithmic or algebraic type, we show how in the context of such a partitioning the invariance property of the measure can be exploited to express the singular integral exactly in terms of regular integrals. For the evaluation of these regular integrals, we adopt a composite barycentre rule, which for sufficiently regular integrands exhibits second-order convergence with respect to the maximum diameter of the subsets. As an application we show how this approach, combined with a singularity-subtraction technique, can be used to accurately evaluate the singular double integrals that arise in Hausdorff-measure Galerkin boundary element methods for acoustic wave scattering by fractal screens

    Fast hybrid numerical-asymptotic boundary element methods for high frequency screen and aperture problems based on least-squares collocation

    Get PDF
    We present a hybrid numerical-asymptotic (HNA) boundary element method (BEM) for high frequency scattering by two-dimensional screens and apertures, whose computational cost to achieve any prescribed accuracy remains bounded with increasing frequency. Our method is a collocation implementation of the high order hp HNA approximation space of Hewett et al. (IMA J Numer Anal 35:1698–1728, 2015), where a Galerkin implementation was studied. An advantage of the current collocation scheme is that the one-dimensional highly oscillatory singular integrals appearing in the BEM matrix entries are significantly easier to evaluate than the two-dimensional integrals appearing in the Galerkin case, which leads to much faster computation times. Here we compute the required integrals at frequency-independent cost using the numerical method of steepest descent, which involves complex contour deformation. The change from Galerkin to collocation is nontrivial because naive collocation implementations based on square linear systems suffer from severe numerical instabilities associated with the numerical redundancy of the HNA basis, which produces highly ill-conditioned BEM matrices. In this paper we show how these instabilities can be removed by oversampling, and solving the resulting overdetermined collocation system in a weighted least-squares sense using a truncated singular value decomposition. On the basis of our numerical experiments, the amount of oversampling required to stabilise the method is modest (around 25% typically suffices), and independent of frequency. As an application of our method we present numerical results for high frequency scattering by prefractal approximations to the middle-third Cantor set

    Efficacy of a 3 month training program on the jump-landing technique in jump-landing sports. Design of a cluster randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the relatively high rate of injuries to the lower extremity due to jump-landing movement patterns and the accompanied high costs, there is need for determining potential preventive programs. A program on the intervention of jump-landing technique is possibly an important preventative measure since it appeared to reduce the incidence of lower extremity injuries. In real life situations, amateur sports lack the infrastructure and funds to have a sports physician or therapist permanently supervising such a program. Therefore the current prevention program is designed so that it could be implemented by coaches alone.</p> <p>Objective</p> <p>The objective of this randomized controlled trial is to evaluate the effect of a coach supervised intervention program targeting jump-landing technique on the incidence of lower extremity injuries.</p> <p>Methods</p> <p>Of the 110 Flemish teams of the elite division, 24 teams are included and equally randomized to two study groups. An equal selection of female and male teams with allocation to intervention and control group is obtained. The program is a modification of other prevention programs previously proven to be effective. All exercises in the current program are adjusted so that a more progressive development in the exercise is presented. Both the control and intervention group continue with their normal training routine, while the intervention group carries out the program on jump-landing technique. The full intervention program has a duration of three months and is performed 2 times a week during warm-up (5-10 min). Injuries are registered during the entire season.</p> <p>Discussion</p> <p>The results of this study can give valuable information on the effect of a coach supervised intervention program on jump-landing technique and injury occurrence. Results will become available in 2011.</p> <p>Trial registration</p> <p>Trial registration number: NTR2560</p

    Cosmic Ray Anomalies from the MSSM?

    Get PDF
    The recent positron excess in cosmic rays (CR) observed by the PAMELA satellite may be a signal for dark matter (DM) annihilation. When these measurements are combined with those from FERMI on the total (e++e−e^++e^-) flux and from PAMELA itself on the pˉ/p\bar p/p ratio, these and other results are difficult to reconcile with traditional models of DM, including the conventional mSUGRA version of Supersymmetry even if boosts as large as 103−410^{3-4} are allowed. In this paper, we combine the results of a previously obtained scan over a more general 19-parameter subspace of the MSSM with a corresponding scan over astrophysical parameters that describe the propagation of CR. We then ascertain whether or not a good fit to this CR data can be obtained with relatively small boost factors while simultaneously satisfying the additional constraints arising from gamma ray data. We find that a specific subclass of MSSM models where the LSP is mostly pure bino and annihilates almost exclusively into τ\tau pairs comes very close to satisfying these requirements. The lightest τ~\tilde \tau in this set of models is found to be relatively close in mass to the LSP and is in some cases the nLSP. These models lead to a significant improvement in the overall fit to the data by an amount Δχ2∌1/\Delta \chi^2 \sim 1/dof in comparison to the best fit without Supersymmetry while employing boosts ∌100\sim 100. The implications of these models for future experiments are discussed.Comment: 57 pages, 31 figures, references adde

    Anticipated impact of the 2009 Four Corners raid and arrests

    Full text link
    Archaeological looting on United States federal land has been illegal for over a century. Regardless, the activity has continued in the Four Corners region. This paper discusses how the 1979 Archaeological Resources Protection Act (ARPA) can be viewed as sumptuary law, and within a sumptuary context, subversion can be anticipated. An analysis of 1986 and June 2009 federal raids in the Four Corners will exemplify this point by identifying local discourses found in newspapers both before and after each raid, which demonstrate a sumptuary effect. Ultimately, this paper concludes that looting just adapted, rather than halted, after each federal raid and that understanding this social context of continued local justification and validation of illegal digging is a potential asset for cultural resource protection
    • 

    corecore