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Abstract
We present a hybrid numerical-asymptotic (HNA) boundary element method (BEM) for

high frequency scattering by two-dimensional screens and apertures, whose computational

cost to achieve any prescribed accuracy remains bounded with increasing frequency. Our

method is a collocation implementation of the high order hp HNA approximation space of

Hewett et al. (IMA J Numer Anal 35:1698–1728, 2015), where a Galerkin implementation

was studied. An advantage of the current collocation scheme is that the one-dimensional

highly oscillatory singular integrals appearing in the BEM matrix entries are significantly

easier to evaluate than the two-dimensional integrals appearing in the Galerkin case, which

leads to much faster computation times. Here we compute the required integrals at fre-

quency-independent cost using the numerical method of steepest descent, which involves

complex contour deformation. The change from Galerkin to collocation is nontrivial

because naive collocation implementations based on square linear systems suffer from

severe numerical instabilities associated with the numerical redundancy of the HNA basis,

which produces highly ill-conditioned BEM matrices. In this paper we show how these

instabilities can be removed by oversampling, and solving the resulting overdetermined

collocation system in a weighted least-squares sense using a truncated singular value

decomposition. On the basis of our numerical experiments, the amount of oversampling

required to stabilise the method is modest (around 25% typically suffices), and independent

of frequency. As an application of our method we present numerical results for high

frequency scattering by prefractal approximations to the middle-third Cantor set.
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1 Introduction

The numerical simulation of high frequency (short wavelength) acoustic and electro-

magnetic scattering is challenging because of the need to capture the rapid oscillations in

the wave field. Conventional Boundary Element Methods (BEMs), based on piecewise-

polynomial basis functions, are computationally expensive because they require a fixed

number of degrees of freedom (DOFs) per wavelength to achieve accurate solutions. This

leads to very large (dense) BEM matrices which are costly to store and invert.

By contrast, hybrid numerical-asymptotic (HNA) BEMs use basis functions built from

piecewise polynomials on coarse meshes multiplied by certain oscillatory functions,

chosen based on partial knowledge of the high frequency asymptotic solution behaviour, as

described by Geometrical Optics (GO) and the Geometrical Theory of Diffraction (GTD)

[4, 41, 43]. The goal of the HNA approach (reviewed in [7]) is to achieve a fixed accuracy

of approximation using a number of DOFs that is relatively small and frequency-inde-

pendent, or only modestly (e.g. logarithmically) frequency-dependent, making it easier to

store and invert the BEM matrix at high frequencies. HNA BEMs have been successfully

developed for scattering by impenetrable convex [12, 13, 33], nonconvex [10, 31] and

curvilinear [44] polygons, two-dimensional screens and apertures [32], smooth convex

two-dimensional [2, 5, 19–21] and three-dimensional [23] scatterers, three-dimensional

rectangular screens [30], penetrable convex polygons [27, 28] and, recently, for certain

multi-obstacle scattering problems [6].

The use of oscillatory bases in HNA methods leads to an essentially frequency-inde-

pendent BEM system size. However, the BEM matrix entries now involve highly oscil-

latory singular integrals, which need to be evaluated efficiently if one is to achieve the

‘‘holy grail’’ of frequency-independent computational cost. The majority of HNA methods

in the literature to date (e.g. [10, 12, 13, 19–21, 23, 28, 30–33, 44]) are based on Galerkin

discretisations. This leads to provably stable approximations and, in many cases (e.g.

[10, 12, 20, 21, 31–33]), provides the framework for a rigorous, frequency-explicit con-

vergence analysis. But Galerkin testing produces high-dimensional oscillatory integrals,

which complicates the development of fast quadrature routines.

In order to develop HNA methods for more practically relevant problems than those

tackled so far (in particular, three-dimensional problems), it would be highly advantageous

to be able to use a collocation or Nyström approach, for which numerical quadrature is

simpler. Existing work in this direction includes for example the piecewise-constant col-

location method for convex polygons in [1], the B-spline method for two-dimensional

smooth convex scatterers in [25] (which is based on the earlier technical report [26]) and

the closely related Nyström method in [5]. However, these approaches are not generally

supported by rigorous stability and convergence analysis, a practical consequence of which

being that it is not at all obvious how to determine collocation/quadrature point distribu-

tions leading to stable approximations. This question is particularly delicate when working

with non-smooth scatterers and HNA approximation spaces built with overlapping meshes

to represent different high frequency solution components (as in [1]), which can exhibit a

high degree of numerical ‘‘redundancy’’ and hence severe ill-conditioning (see e.g. the

discussion in [1, §2] and §5 below).

Our aim in this paper is to demonstrate that accurate and efficient collocation-based

HNA methods can indeed be developed for high frequency scattering problems involving

non-smooth scatterers. The key new idea, apparently not employed previously in HNA
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methods, is to stabilise the method using oversampling, and solve the resulting overde-

termined collocation linear system in a weighted least-squares sense.

We present our oversampled collocation approach in the context of a specific model

problem, namely high frequency two-dimensional scattering by colinear screens and

apertures. For an illustration of the problem see Fig. 1. Such problems have numerous

applications in acoustics, electromagnetics and water waves - for details we refer to the

extensive reference list in [32], noting also the recent work on iterative Wiener-Hopf

approaches to this problem in [49]. Our collocation HNA BEM for the screen problem uses

the same high order HNA approximation space as the Galerkin method presented in [32],

which is based on an hp refinement strategy, giving exponential accuracy with increasing

polynomial degree (see Theorem 3 below). To stabilise our collocation method we take

more collocation points than degrees of freedom, and solve the resulting rectangular

(overdetermined) system in a weighted least-squares sense, using a truncated singular

value decomposition. The one-dimensional oscillatory singular integrals appearing in the

BEM matrix are evaluated accurately and efficiently using the numerical method of

steepest descent [16, 17, 39], which is based on complex contour deformation, combined

with generalised Gaussian quadrature [37], to handle the singularities without the need for

mesh grading.

By a series of numerical experiments we demonstrate that our HNA collocation BEM

can achieve a fixed solution accuracy in a computation time that is bounded (in fact,

sometimes even decreasing) as the frequency tends to infinity. A key empirical observation

(that we are currently unable to explain theoretically) is that the oversampling threshold,

which governs the number of collocation points per DOF, does not need to increase with

increasing frequency in order to maintain accuracy.

This paper has as its genesis the MSc dissertation [48] of the fourth author, in which a

range of HNA approximation spaces and collocation point distribution strategies were

compared for square collocation BEM matrices. Numerical instabilities encountered in

[48] motivated the investigation of the oversampled collocation method presented here.

The oscillatory integration in [48] was carried out using Filon quadrature (see e.g.

[16, 38, 40]), combined with mesh grading to handle singularities (as in [18]).

We point out that our oversampled collocation approach differs slightly from that of the

CHIEF method of [50]. The CHIEF method was developed for scattering by closed sur-

faces, and introduces extra collocation points in the interior of the scatterer to stabilise

integral equation formulations that are ill-posed at certain values of k, corresponding to

interior resonances. In the current paper we are introducing extra collocation points on the

Fig. 1 Real part of the total field for scattering by NC ¼ 4 colinear sound-soft screens constituting the order
j ¼ 2 prefractal of the middle-third Cantor set (for more details see §7.3). The incident wave propagates
from top left to bottom right
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scatterer boundary, to stabilise an integral equation formulation for scattering by an open

surface (in particular, the scatterer has no interior), which is well-posed for all k but suffers

from ill-conditioning when approximated numerically.

The structure of the paper is as follows. In Sect. §2 we define the scattering problem and

its boundary integral equation reformulation. In §3 we describe the HNA approximation

space of [32], and recall the corresponding best approximation error estimate. In §4 we

present our regularised collocation approach, and in §5 we discuss the philosophy behind

the truncated SVD approach used to solve the least-squares problem. In §6 we outline our

numerical quadrature scheme for evaluating the oscillatory and singular integrals

appearing in the BEM system. In §7 we present a series of numerical experiments

demonstrating the performance of our method, including an application to scattering by the

middle-third Cantor set.

2 Problem statement

We consider 2D time-harmonic acoustic scattering by a sound-soft (Dirichlet) screen

C ¼ fðx1; 0Þ 2 R2 : x1 2 eCg; eC ¼
[

NC

j¼1

ðs2j�1; s2jÞ; ð1Þ

a bounded and relatively open subset of C1 :¼ fx ¼ ðx1; x2Þ 2 R2 : x2 ¼ 0g comprising

NC � 1 colinear disjoint open intervals, with 0 ¼ s1\s2\. . .\s2NC ¼ diamC. We assume

that lengths have been nondimensionalised so that s2NC ¼ diamC ¼ 1. For each j ¼
1; . . .;NC we set Cj :¼ ðs2j�1; s2jÞ � f0g � R2. The propagation domain is D :¼ R2 n C,

and on C we define the normal vector n ¼ ð0; 1Þ.
As the incident wave we take uiðxÞ :¼ eikx�d, where k[ 0 is the nondimensional

wavenumber and d ¼ ðd1; d2Þ 2 R2 is a unit direction vector. The boundary value problem

(BVP) to be solved is: Find u 2 C2 Dð Þ \ CðR2Þ \W1
locðDÞ s.t.

Duþ k2u ¼ 0; in D; ð2Þ

u ¼ 0; on C; ð3Þ

with the scattered field us :¼ u� ui satisfying the Sommerfeld radiation condition (see,

e.g., [7, Equation (2.9)]). Here W1
locðDÞ is the usual space of locally square-integrable

functions whose weak gradient is also locally square-integrable. Well-posedness of the

BVP (2)–(3) is proved, for example, in [52]. For an example solution see Fig. 1.

Remark 1 By Babinet’s principle, the Dirichlet screen problem (2)–(3) is equivalent to its

complementary aperture problem, in which ui impinges on an aperture C in a sound-hard

(Neumann) screen occupying C1 n C. (For a precise definition of the aperture BVP see

[32, Definition 1.2].) Explicitly, with U� ¼ fx 2 R2 : �x2 [ 0g, urðxÞ :¼ eikx�d0 , d2\0,

and d0 :¼ ðd1;�d2Þ, the screen and aperture solutions u and u0 are connected by the

formula [32, Equation (3.8)]

u0ðxÞ ¼
urðxÞ þ uðxÞ; x 2 Uþ;

uiðxÞ � uðxÞ; x 2 U�:

�

ð4Þ
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Theorem 1 below reformulates the BVP (2)–(3) as an an integral equation for the normal

derivative jump ½ou=on� :¼ ðou=onÞþ � ðou=onÞ�, where � respectively denote the values

on the top (þ) and bottom (-) of C. We first clarify some notation (for more detail see

[32]). For s 2 R, we denote by HsðRÞ the usual Sobolev space on R, which, following

[8, 32], we equip with the wavenumber-dependent norm

kuk2
Hs

k
ðRÞ :¼

Z 1

�1
ðk2 þ n2Þs jûðnÞj2 dn; ð5Þ

where û denotes the Fourier transform of u. We set eHsðeCÞ :¼ C1
0 ðeCÞ

HsðRÞ
, equipped with

the norm kukHs
k
ðRÞ inherited from HsðRÞ, and HsðeCÞ :¼ fu ¼ Uj

eC
: U 2 HsðRÞg, equipped

with the norm kuk
Hs

k
ðeCÞ

¼ inf kUkHs
k
ðRÞ, where the infimum is taken over all U 2 HsðRÞ

such that u ¼ Uj
eC

. We identify C � C1 with eC � R in the natural way and define

HsðC1Þ :¼ HsðRÞ, eHsðCÞ :¼ eHsðeCÞ, HsðCÞ :¼ HsðeCÞ etc. We denote by S : eH�1=2ðCÞ !
C2ðDÞ \W1

locðR2Þ and S : eH�1=2ðCÞ ! H1=2ðCÞ the standard single-layer potential and

single-layer boundary integral operator, which for / 2 L2ðCÞ have the integral

representations

S/ðxÞ ¼
Z

C
Uðx; yÞ/ðyÞ dsðyÞ; x 2 R2;

S/ðxÞ ¼
Z

C
Uðx; yÞ/ðyÞ dsðyÞ; x 2 C;

where Uðx; yÞ :¼ ði=4ÞHð1Þ
0 ðkjx� yjÞ is the fundamental solution of (2).

Theorem 1 [52, Theorem 1.7], [32, Theorem 3.1] Suppose that u is a solution of the BVP
(2)–(3). Then the representation formula

uðxÞ ¼ uiðxÞ � SvðxÞ; x 2 D; ð6Þ

holds, with v ¼ ½ou=on� 2 eH�1=2ðCÞ. Furthermore, v satisfies the integral equation

Sv ¼ f ; ð7Þ

with f :¼ uijC 2 H1=2ðCÞ. Conversely, suppose that v 2 eH�1=2ðCÞ satisfies (7). Then u
defined by (6) satisfies the BVP (2)–(3), and ½ou=on� ¼ v.

We note that (7) is well-posed for all k[ 0, with no spurious frequencies. Indeed, the

operator S is coercive (strongly elliptic) on eH�1=2ðCÞ [8].

3 Hybrid numerical-asymptotic approximation space

Our hp HNA BEM approximation space for solving the BIE (7) is identical to that con-

sidered in [32]. Its design is motivated by the following regularity result.

Theorem 2 [32, Theorem 4.1, Lemma 4.5] The solution v ¼ ½ou=on� of the BIE (7) can be
decomposed on each screen component Cj, j ¼ 1; . . .;NC, as

SN Partial Differential Equations and Applications

SN Partial Differ. Equ. Appl. (2020) 1:21 Page 5 of 26 21



vðxðsÞÞ ¼ WðxðsÞÞ þ vþj ðs� s2j�1Þeiks þ v�j ðs2j � sÞe�iks; s 2 ðs2j�1; s2jÞ; ð8Þ

where W :¼ �2 sgn ðd2Þoui=on, and the functions v�j ðsÞ are analytic in Rs[ , and, for

each k0 [ 0, there exists a constant C[ 0, depending only on k0, such that

jv�j ðsÞj 	Cð1 þ kÞkjksj�1=2; Rs[ 0; k� k0: ð9Þ

The known term W constitutes the ‘‘physical optics’’ approximation, describing the con-

tribution to v ¼ ½ou=on� of the incident and specularly reflected waves. The bounds (9)

imply that the unknown functions v�j , which correspond to the amplitudes of the diffracted

waves, are non-oscillatory as a function of s (see [32, Remark 4.2]), which means they can

be approximated much more efficiently than the full (oscillatory) solution v. Hence, rather

than approximating v itself using piecewise polynomials on a fine (k-dependent) mesh (as

in conventional BEMs), our HNA approximation space uses the decomposition (8), with W
evaluated analytically and vþj and v�j replaced by piecewise polynomials on coarse (k-

independent) meshes, graded to account for the singularities of vþj at s2j�1, and of v�j at s2j.

To describe the meshes we use, we first define a geometrically graded mesh M on the

interval [0, 1] with l elements and grading parameter r 2 ð0; 1=2Þ, and an associated space

of piecewise polynomials PpðMÞ, by

M :¼ fxigli¼0; x0 ¼ 0; xi ¼ rl�i; i ¼ 1; . . .; l;

PpðMÞ :¼ q : ½0; 1� ! C : qj xi�1;xið Þ is a polynomial of degree 	ðpÞi; i ¼ 1; . . .; l
n o

;

where the degree vector p 2 Nl
0 is defined for a given maximum degree p[ 0 by

ðpÞi :¼
p� lþ 1 � i

l
p

� �

; 1	 i	 l� 1;

p; i ¼ l:

8

<

:

ð10Þ

Then for each screen segment Cj of length Lj :¼ s2j � s2j�1, we define the meshes

M�
j :¼ s2j�1 þ LjM; Mþ

j :¼ s2j � LjM;

and denote by PpðM�
j Þ the associated spaces of piecewise polynomials, defined analo-

gously to PpðMÞ above. For an illustration of the resulting meshes see Fig. 2. Finally, our

HNA approximation space for approximating the difference v�W is

VN :¼ a
NC

j¼1
PpðMþ

j Þeiks þ PpðM�
j Þe�iks

h i

; ð11Þ

with dimension

N ¼ 2NC

X

l

i¼1

½ðpÞi þ 1�:

We then have the following best approximation error estimate.
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Theorem 3 [32, Theorem 5.1] Let k0 [ 0 and l� cp for some constant c[ 0. Then for
every d[ 0 there exists a constant C[ 0, depending only on d, r, NC and c, and a
constant s[ 0, depending only on d, r and c, such that

inf
g2VN

kðv�WÞ � gk
eH

�1=2

k
ðCÞ

	Cð1 þ kÞkd e�ps; k� k0: ð12Þ

Theorem 3 states that VN can approximate v�W with an error which decreases expo-

nentially as the maximum polynomial degree p tends to infinity, with a k-independent

exponent. While the constant premultiplying the exponential factor grows with increasing

k, it does so only modestly (like Oðk1þd)), meaning that we can achieve any specified

accuracy of approximation with p growing only logarithmically in k as k ! 1. This

corresponds to the number of degrees of freedom N growing like log2 k as k ! 1. We

shall see later that this logarithmic growth appears unnecessary in practice.

4 Collocation method

The difference

/ :¼ v�W

satisfies the BIE

S/ ¼ f � SW: ð13Þ

Let fungNn¼1 denote a basis for VN . In our implementation, each basis function un consists

of an exponential eiks or e�iks multiplied by an appropriately scaled and translated Legendre

polynomial supported on a single element of one of the meshes Mþ
j or M�

j for some

j 2 f1; . . .;NCg, normalised so that kunkL2ðCÞ ¼ 1.

To select an element
PN

n¼1 anun 2 VN approximating / 2 ~H�1=2ðCÞ we ask that the

BIE (13), with / replaced by
PN

n¼1 anun 2 VN , should hold at a set of M collocation points

CM :¼ fc1; . . .; cMg � eC ¼
[

NC

j¼1

ðs2j�1; s2jÞ:

As we shall see, for reasons of stability it is useful to oversample, taking M[N. The

resulting system of linear equations for the coefficients an, n ¼ 1; . . .;N, is then overde-

termined, so we seek a weighted least-squares solution. Explicitly, given a set of weights

W :¼ fwmgMm¼1 corresponding to the collocation points CM (our choice of weights will be

detailed below), we define A 2 CM�N and b 2 CM by

v−
2

v+
2

Γ2s3 s4 = 1

v−
1

v+
1

Γ10 = s1 s2 s

Fig. 2 Illustration of the overlapping graded meshes used to approximate the amplitudes v�j in (8), in the

case where C comprises two components, C1 and C2
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Am;n :¼
ffiffiffiffiffiffi

wm
p

SunðcmÞ; bm :¼ ffiffiffiffiffiffi

wm
p

f ðcmÞ � SWðcmÞð Þ; m ¼ 1; . . .;M;

n ¼ 1; . . .;N;
ð14Þ

and then seek a ¼ ða1; . . .; anÞT 2 CN minimising the residual

R :¼ kAa� bk2: ð15Þ

This problem is highly ill-conditioned, but can be regularised using a truncated singular

value decomposition (SVD), as in e.g. [22, 29, 46]. The full SVD of A takes the form

A ¼ URV
;

where U and V are unitary matrices, V
 denotes the conjugate transpose of V, and R is an

M � N diagonal matrix. Denote by rn the nth entry of the diagonal of R. To regularise, we

introduce a small threshold �[ 0, and define a modified diagonal matrix R�, which has nth

entry equal to rn if rn=maxn0¼1;...;N rn0 [ �, and zero otherwise. This provides a

regularisation

A� ¼ UR�V
; ð16Þ

from which we can define a via a pseudo-inverse as

a ¼ ðA�Þyb ¼ VðR�ÞyU
b; ð17Þ

where ðR�Þy is the (diagonal) pseudo-inverse of R� with entries ryn , defined such that

r
y
n ¼ 1=rn if rn=maxn0¼1;...;N rn0 [ �, and r

y
n ¼ 0 otherwise.

Regarding the placement of collocation points, while we have no theoretical results to

guide us, as a result of extensive numerical experiments (including those carried out for

square systems (M ¼ N) in [48]), we arrived at the following prescription.

We first select an oversampling threshold COS [ 1. For each j 2 f1; . . .;NCg let s2j�1 ¼
x�j;0\x�j;1\ � � �\x�j;l ¼ s2j denote the points of the overlapping meshes M�

j on Cj (cf.

Fig. 2). On each element ½x�j;i�1; x
�
j;i� we allocate M�

j;i :¼ dCOSðp�j;i þ 1Þe collocation points,

where p�j;i is the largest polynomial degree included on VN on that element. For the

elements ½xþj;0; xþj;1�, ...½xþj;l�2; x
þ
j;l�1� and ½x�j;1; x�j;2�, ...½x�j;l�1; x

�
j;l� we place the collocation

points at the first kind Chebyshev nodes within that element. If we were to follow this same

prescription for the largest elements, ½xþj;l�1; x
þ
j;l� and ½x�j;0; x�j;1�, the overlapping nature of the

meshes would mean that collocation points could coincide with, or lie very close to other

collocation points already selected on the smaller elements. To avoid this, for these largest

elements we allocate Mþ
j;1 þM�

j;l ¼ 2dCOSðpþ 1Þe collocation points at the first kind

Chebyshev nodes in the interval ½xþj;l�1; x
�
j;1� (the intersection of the two largest elements;

recall that 0\r\1=2 so this intersection is non-trivial). The total number of collocation

points is then

M ¼
X

NC

j¼1

X

�

X

l

i¼1

M�
j;i ¼

X

NC

j¼1

X

�

X

l

i¼1

dCOSðp�j;i þ 1Þe � COSN; ð18Þ

and our prescription ensures that
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M�COSN; with equality if COS is an integer. ð19Þ

In (14) we choose weights fwmgMm¼1 that are inversely proportional to the approximate

local density of collocation points. Explicitly, suppose that [a, b] is a mesh element on

which we have allocated M½a;b� collocation points at the first-kind Chebyshev nodes

c‘ ¼ ðaþ bÞ=2 þ ðb� aÞ cosðpð‘� 1=2Þ=M½a;b�Þ=2; ‘ ¼ 1; . . .;M½a;b�:

Then to the points fc‘g we assign the weights fw‘g defined by

w‘ ¼ ðc‘þ1 � c‘Þ=2 þ ðc‘ � c‘�1Þ=2; for ‘ ¼ 2; . . .M½a;b� � 1;

w1 ¼ ðc2 � c1Þ=2 þ ðc1 � aÞ;
wM½a;b� ¼ ðb� cM½a;b� Þ þ ðcM½a;b� � cM½a;b��1Þ=2:

ð20Þ

We motivate this choice of weights in §5, just after (22).

5 Discussion about the SVD solver

In this section we elaborate on the motivation for considering oversampling in combination

with a truncated SVD in the solution method (17). It is known from the earlier analysis in

[32] – recall Theorem 3 in this paper – that the best approximation in the HNA space VN

converges to v�W at an exponential rate. Briefly, oversampling and regularization ensure

that a near-best approximation can also be computed numerically, in spite of potential ill-

conditioning of the linear system (14).

One obvious source of ill-conditioning of the discretization is that the basis functions

uN of the approximation space (11) may be close to being linearly dependent. The

underlying reason is that, loosely speaking, in our discretization on each segment Cj we are

combining two bases together. The impact of this potential redundancy depends on the

values of the wavenumber k and the degree vector p. Consider, for example, the case of

small k: then the functions in the space PpðMþ
j Þeiks are smooth and non-oscillatory on Cj,

and they may approximate the functions in the space PpðM�
j Þe�iks. In the case of fixed k

and a degree vector p associated with a large maximum degree p in (10), we can make a

similar observation: the large degree polynomials in PpðM�
j Þ may resolve the oscillations

of e�iks.

For linear systems with a numerical null-space, the truncated SVD solution satisfies a

specific algebraic minimization property:

Lemma 1 [15, Lemma 3.1] Let a be computed by the regularized pseudo-inverse (17)

with relative threshold �[ 0. Then

kb� Aak2 	 inf
v2CN

kb� Avk2 þ � kAk2 kvk2

� �

: ð21Þ

Lemma 1 shows that the regularized pseudo-inverse (17) yields a solution with small

residual, provided that a coefficient vector v exists with small residual and sufficiently

small norm kvk2. Note that the size of the coefficients is affected by the normalization of

the basis functions, and recall from §3 that for our problem we have normalized the basis
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functions in L2ðCÞ. For us, the existence of suitable vectors that result in a small right-hand

side in (21) is suggested by Theorem 2 and Theorem 3. Thus, ill-conditioning of A due to

redundancy in the discretization does not preclude the computation of highly accurate

solutions.

However, the statement of Lemma 1 is purely algebraic, and a small discrete Euclidean

residual of (14) does not imply a small continuous residual of the integral equation (13) in

H1=2ðCÞ, from which we could infer (by the bounded invertibility of

S : ~H�1=2ðCÞ ! H1=2ðCÞ) a small approximation error of the continuous solution of (13) in
~H�1=2ðCÞ.

In the simpler L2 setting one can appeal to the results on function approximations using

redundant sets and a regularizing SVD solver with threshold � presented in [35, 36]. No

guarantees can be given about the accuracy of interpolation, with errors possibly as large as

1=� [35, Proposition 4.6]. However, oversampling by a ‘sufficient’ amount renders the

approximation problem well-conditioned [36, § 6]. In particular, if functions in a space G

are sampled using a family of functionals f‘M;mgMm¼1, with ‘M;m : G ! C, then ideally the

samples should be sufficiently ‘rich’ to recover any function in G:

A0kgk2 	 lim inf
M!1

X

M

m¼1

j‘m;MðgÞj2 	 lim sup
M!1

X

M

m¼1

j‘m;MðgÞj2 	B0kgk2; 8g 2 G: ð22Þ

The choice to weight matrix entries with
ffiffiffiffi

w
p

m in (14), and the specific choice (20) of the

weights, yields A0 ¼ B0 ¼ 1 for G � L2ðCÞ, because the discrete sums are a Riemann sum

for the L2 norm.

Generalising these results to the ~H�1=2 � H1=2 setting required for the rigorous analysis

of our collocation BEM remains an open problem. Therefore, aside from the motivating

observations presented in this section, our choice of collocation points, and of a linear

oversampling rate M � COSN with a proportionality constant COS that is independent of

the wavenumber, is based largely on numerical experiments, results of which we report in

§7 (and see also [48], where a number of different collocation point allocations were

compared for square systems without oversampling).

6 Oscillatory quadrature

Our HNA approximation space uses oscillatory basis functions supported on large (k-

independent) mesh elements. This means that assembling the discrete system (14) involves

calculating highly oscillatory integrals, which may also be singular.

By applying linear changes of variable and possibly splitting the integration range, the

integrals arising in (14) can all be written in terms of integrals of the general form

I½F; k; T ; a� ¼
Z T

0

Fðt; kÞeikatdt; ð23Þ

where k[ 0 is the wavenumber, T[ 0, a 2 ½0; 2�, and Fð�; kÞ is smooth and non-oscil-

latory on (0, T) but possibly logarithmically singular at, or near, the left endpoint t ¼ 0.

More explicitly, we shall assume that, for some t0 2 ð�1; 0�, Fð�; kÞ is analytic in the cut-

plane C n ð�1; t0�, with at most polynomial growth as jtj ! 1, and that there exists ~c[ 0

and two functions F0ðt; kÞ and F1ðt; kÞ, analytic in kjt � t0j\~c, such that
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Fðt; kÞ ¼ F0ðt; kÞ þ F1ðt; kÞ logðkjt � t0jÞ; for kjt � t0j\~c: ð24Þ

We explain the transformation of the integrals in (14) to the form (23) in §6.1. Then in §6.2

we outline our method for efficiently calculating integrals of the form (23).

6.1 Transformation to the general form (23)

The left-hand side of the system (14) consists of integrals of the form

SunðcmÞ ¼
i

4

Z b

a

H
ð1Þ
0 ðkjcm � sjÞLq;½a;b�ðsÞe�iksds;

¼ i

4

Z b

a

H
ð1Þ
0 ðkjcm � sjÞ

eikjcm�sj Lq;½a;b�ðsÞeikðjcm�sj�sÞds;

ð25Þ

where un ¼ Lq;½a;b�ðsÞe�iks is the nth basis function, Lq;½a;b� is the L2-normalised Legendre

polynomial of some degree q on ½a; b� ¼ suppun, and cm is the mth collocation point. To

obtain a non-oscillatory prefactor we have extracted the phase of the Hankel function in

(25) using [47, (10.2.5)]. To express (25) in the form (23) we then proceed by cases. In

each case below, the fact that the resulting prefactor satisfies (24) follows from the small

argument behaviour of the Hankel function (see e.g. [47, (10.4.3),(10.2.2),(10.8.2)]).

– Case A: If cm 	 a then jcm � sj ¼ s� cm on [a, b] and a translation s ¼ aþ t puts (25)

in the form (23) with T ¼ b� a, a ¼ 1 � 1 (i.e. 0 for þ and 2 for -) and

Fðt; kÞ ¼ i

4
eikða�a�cmÞ H

ð1Þ
0 ðkðaþ t � cmÞÞ

eikðaþt�cmÞ
Lq;½a;b�ðaþ tÞ;

which has a logarithmic singularity at t0 ¼ cm � a	 0.

– Case B: If cm � b then the reflection t 7! � t puts us in Case A.

– Case C: If a\cm\b then splitting the integral as
R b

a ¼
R cm
a þ

R b

cm
produces two

integrals satisfying the conditions of Cases B and A respectively.

The right-hand side of (15) involves the evaluation of

SWðcmÞ ¼
jd2jk

2

X

NC

j¼1

Z s2j

s2j�1

H
ð1Þ
0 ðkjcm � sjÞ

eikjcm�sj eikðjcm�sjþd1sÞds: ð26Þ

Each integral in the sum (26) can be expressed in the form (23) by essentially the same

procedure described above. For example, when cm 	 s2j�1 we can adapt the approach of

Case A to write
R s2j

s2j�1
in the form (23) with T ¼ Lj ¼ s2j � s2j�1, a ¼ 1 þ d1, and

Fðt; kÞ ¼ jd2jk
2

eikðs2j�1�cmÞ H
ð1Þ
0

ðkðs2j�1þt�cmÞÞ
e

ikðs2j�1þt�cmÞ , which has a logarithmic singularity at

t0 ¼ cm � s2j�1 	 0.

6.2 Fast evaluation of (23) using numerical steepest descent with generalised
Gaussian quadrature

Depending on the values of the parameters k; T ; a and t0, the integrand (23) may be highly

oscillatory and/or numerically singular. In this section we describe an algorithm which can

compute (23) efficiently in all cases. Our approach combines the method of numerical

steepest descent (see e.g. [16, 17, 39]), which uses complex contour deformation to convert
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oscillatory integrals into rapidly decaying ones, with generalised Gaussian quadrature (see

e.g. [34, 37]), which handles the singularities. Our method is an extension of the

scheme presented in [34, §4.3], which was shown to accurately calculate singular oscil-

latory integrals, to the case of near-singularities, where the integrand has a singularity

outside of, but close to the integration range.

Our algorithm involves two parameters cosc [ 0 and 0\csing 	 1, which are used to

classify the integral (23) into one of four cases (described below). The parameter cosc

represents the minimum number of oscillations in the exponential factor eikat there need to

be over the interval [0, T] for us to consider the integral oscillatory (and apply numerical

steepest descent). That is, we consider the integral oscillatory when kaT=ð2pÞ[ cosc and

non-oscillatory otherwise. The parameter csing controls how close to the integration range

the singularity at t0 needs to be for us to consider the integral singular (and apply gen-

eralised Gaussian quadrature). An important factor affecting the accuracy of numerical

quadrature based on polynomial approximation for non-entire functions is the distance

from the integration interval to the nearest singularity, measured relative to the length of
the integration interval (e.g. [53, Theorem 19.3]). So, in the non-oscillatory case we

consider the integral singular when jt0j=T\csing. But when the integral is oscillatory this is

an unnecessarily stringent condition, because as ka ! 1 with T fixed the main contri-

bution to the integral comes from small neighbourhoods of the endpoints t ¼ 0 and t ¼ T
of size approximately Oð1=ðkaÞÞ (e.g. [16, (2.1)]). Hence, in the oscillatory case we

consider the integral singular when jt0jka=ð2pcoscÞ\csing. The inclusion of cosc in the

denominator here ensures our classifications are compatible, in the sense that in the bor-

derline case kaT=ð2pÞ ¼ cosc, the transition between singular and non-singular cases

occurs at jt0j=T ¼ csing for both the oscillatory and non-oscillatory cases.

Our algorithm also depends on one further parameter, NQ 2 N, which controls the

number of quadrature points used. Explicitly, we use NQ points for each standard Gaussian

quadrature rule and 2NQ points for each generalised Gaussian quadrature rule (since

generalised Gaussian quadrature requires twice as many points as standard Gaussian

quadrature to achieve the same degree of exactness, see e.g. [37]).

We now present our algorithm, along with diagrams illustrating the contour deforma-

tions involved. Here the arrows indicate the direction along which each contour should be

traversed, and the dashed line represents the original integration contour [0, T].

– Case 1: kaT=ð2pÞ	 cosc and jt0j=T � csing (non-oscillatory, non-singular). We evaluate

(23) using standard Gauss–Legendre quadrature with NQ points.

– Case 2: kaT=ð2pÞ	 cosc and jt0j=T\csing (non-oscillatory, singular). We write (23) as

the difference of two singular integrals

T

0
= −

0

t0

+
T

t0

,
0

t0 T

to which we apply generalised Gauss–Legendre quadrature with 2NQ points for each

integral. (When t0 ¼ 0 the first integral is not present.)

– Case 3: kaT=ð2pÞ[ cosc and jt0jka=ð2pcoscÞ� csing (oscillatory, non-singular). We

deform the integration contour into the complex plane, writing
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T

0
=

i∞

0
−

T+i∞

T

,

0t0 T

T + i∞i∞

justified by our assumption that ka� 0 and that Fð�; kÞ grows only polynomially at infinity,

meaning that the integrand of (23) decays exponentially as Im t ! 1. Parametrizing the

integrals by t ¼ ikan (respectively t ¼ T þ ikan) gives

Z T

0

¼ i

ka

Z 1

0

F
in
ka

; k

� 	

e�n dn� ieikaT

ka

Z 1

0

F T þ in
ak

; k

� 	

e�n dn; ð27Þ

we evaluate both semi-infinite integrals using standard Gauss–Laguerre quadrature

with NQ points for each integral.

– Case 4: kaT=ð2pÞ[ cosc and jt0jka=ð2pcoscÞ\csing (oscillatory, singular). We write the

integral as

T

0
= −

0

t0

+
t0+i∞

t0

−
T+i∞

T

,

0t0 T

t0 + i∞ T + i∞

evaluating the first integral using generalised Gauss–Legendre quadrature with 2NQ

points, the second using generalised Gauss–Laguerre quadrature1 with 2NQ points, and the

third using standard Gauss–Laguerre quadrature with NQ points. (Again, when t0 ¼ 0 the

first integral is not present.) Here our assumption that csing 	 1 ensures that our treatment of

the third integral
R Tþi1
T as non-singular (being evaluated by standard, rather than gener-

alised Gauss–Laguerre quadrature) is consistent with our classification of the two integrals

in Case 3 as non-singular, in the sense that if kaT=ð2pÞ[ cosc then

kaðT � t0Þ=ð2pcoscÞ� kaT=ð2pcoscÞ[ 1� csing:

The total number of quadrature points (a proxy for computational cost) is NQ in Case 1,

4NQ in Case 2, 2NQ in Case 3, and 5NQ in Case 4 (excluding special cases where t0 ¼ 0).

Therefore, to minimise computational cost, we should take cosc as large as possible, and

csing as small as possible, so as to be in the cheapest Case 1 (non-oscillatory and non-

singular) as often as possible. But obviously one cannot take cosc too large, or csing too

1 In related literature it is common for generalised Gauss–Laguerre to refer to a quadrature rule for integrals

of the form
R1

0
x�mf ðxÞe�xdx, for m[ � 1 where f is well-approximated by a polynomial, but we do not use

this definition here. In this paper, we use generalised Gauss–Laguerre to mean a quadrature rule which can

efficiently evaluate
R1

0
½logðxÞf ðxÞ þ gðxÞ�e�xdx, where f and g are well-approximated by polynomials.
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small, else oscillations (respectively, singularities) will not be adequately resolved. We

investigate the choice of these parameters in more detail in the next section.

6.3 Choice of parameters

To validate the quadrature scheme described in §6.2 and tune the parameters cosc, csing and

NQ we carried out a detailed set of experiments for the model integral

Z 1

0

H
ð1Þ
0 ðkðt � t0ÞÞ dt; ð28Þ

which is of the form (23) with a ¼ T ¼ 1 and Fðt; kÞ ¼ H
ð1Þ
0 ðkðt � t0ÞÞe�ikt. For all pos-

sible combinations of cosc 2 f1; . . .; 5g, csing 2 f0; 0:1; 0:2; . . .; 1g and

NQ 2 f5; 10; 15; 20g, we computed the integral (28) using our algorithm at a large number

of values of the parameters k and t0 in the range k 2 ð0; 100�, t0 2 ½�1; 0�. For each set of

parameters we measured the relative error compared to a reference value for (28), com-

puted using a composite Gauss rule with a large number of quadrature points and mesh

grading to handle (near) singularities. Based on numerical experiments we believe this

reference solution to be accurate to at least 14 digits.

Based on our experiments, the choices

cosc ¼ 2; csing ¼ 0:5; NQ ¼ 20 ð29Þ

were found to produce a scheme which agrees with the reference solution to at least 12

digits, uniformly over the range of k and t0 tested, and these are the values we use in all our

numerical results in §7. As evidence of this claim we show in Fig. 3a a plot of the

corresponding relative error over the studied range of k and t0. The ðk; t0Þ plane is divided

into the four regions in which Cases 1,2,3 and 4 apply. The maximum relative error over

the whole plot is 1:6 � 10�13.

For comparison we show in Fig. 3b the corresponding plot for the choices cosc ¼ 4,

csing ¼ 0:1 and NQ ¼ 15. The maximum relative error over the whole plot is now

7:5 � 10�8, and one can clearly see the accuracy degrading as one moves to the right in

region 1 (increasing oscillation) and downwards in regions 1 and 3 (approaching

singularity).

As we shall show in §7, the quadrature scheme in §6.2 with the parameter choices (29)

is sufficiently efficient to achieve our goal of frequency independent computational cost for

the HNA collocation BEM. However, we do not claim that the quadrature scheme is

completely optimal. In particular, we note that the error in numerical steepest descent

(without singularities) behaves like OððkaÞ�2NQ�1Þ as ka ! 1 (see e.g. [16, p90]), so in

Cases 3 and 4 savings could be made by reducing NQ as ka grows. But we reserve such

further optimisation for future work.

7 Numerical results

In this section we demonstrate the computational efficiency of our HNA collocation BEM

via a series of numerical examples. We also include the results of experiments exploring

the influence of the parameters COS and � in the truncated SVD solver. Finally we present

an application of our method to the computation of high frequency scattering by high order

prefractals of the middle-third Cantor set. The code used to produce the results in this

SN Partial Differential Equations and Applications

21 Page 14 of 26 SN Partial Differ. Equ. Appl. (2020) 1:21



section forms part of a larger Matlab-based HNA BEM software repository, which is

downloadable from github.com/AndrewGibbs/HNABEMLAB.

Throughout this section we denote by vp :¼ /p þW our HNA BEM approximation to

the solution v of the original BIE (7), where /p denotes our approximation of the solution

/ of the BIE (13), the subscript p indicating the maximum polynomial degree used in our

HNA approximation space VN , and W denotes the geometrical optics contribution. We

denote by v�j;p the corresponding numerical approximations to the amplitudes v�j of the

oscillatory functions e�iks in the decomposition (8). From the boundary solution we obtain

an approximation

usp :¼ �Svp

to the scattered field us in D (cf. (6)), and an approximation

u1p ðhÞ :¼ �
Z

~C
e�iks cos hvpðsÞds ð30Þ

to the far-field pattern

u1ðhÞ :¼ �
Z

~C
e�iks cos hvðsÞds; ð31Þ

which describes the far-field behaviour of us via

usðxÞ� u1ðhÞ eiðkrþp=4Þ

2
ffiffiffiffiffiffiffiffiffiffi

2pkr
p ; for x ¼ rðcos h; sin hÞ; as kxk2 ¼: r ! 1:

Unless otherwise stated, in our numerical results we use the following parameters:

HNA space parameters (§3):

We use the mesh grading parameter r ¼ 0:15 and the number of layers ‘ ¼ 2ðpþ 1Þ for

each graded mesh, as in related studies (e.g. [6, 32]).

Fig. 3 Plots of log10 of the relative error in computing (28) using the quadrature scheme of §6.2 for two
different sets of quadrature parameters fcosc ¼ 2; csing ¼ 0:5;NQ ¼ 20g and

fcosc ¼ 4; csing ¼ 0:1;NQ ¼ 15g. In both plots the labels 1-4 indicate the regions of the ðk; t0Þ plane in

which Cases 1, 2, 3 and 4 apply
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Collocation parameters (§4 and §5):

We use the oversampling parameter COS ¼ 1:25 and the SVD truncation parameter

� ¼ 10�8. These values were chosen based on the experiments summarised in §7.2.

Quadrature parameters (§6):

We take cosc ¼ 2, csing ¼ 0:5 and NQ ¼ 20, as discussed in §6.3 (see (29)).

7.1 High frequency performance

To illustrate the high frequency performance of our HNA method we consider first the case

where the screen consists of a single unit interval C ¼ ð0; 1Þ � f0g. Examples with mul-

tiple screens will be considered in §7.3. As the incident wave direction we take

d ¼ ð1;�1Þ=
ffiffiffi

2
p

. Figure 4a shows the resulting total field for wavenumber k ¼ 128, and

Fig. 4b, c plot the boundary solution v8, along with the magnitudes jv�1;8j of the non-

oscillatory amplitudes of the oscillatory factors e�iks, for both k ¼ 128 and k ¼ 512.

In Fig. 5a we show the relative L1ðCÞ error

Rel. L1 err. on C :¼
kvp � v12kL1ðCÞ

kv12kL1ðCÞ
ð32Þ

in the BEM solution for a range of values of p and k, using p ¼ 12 as reference solution.

Fig. 4 HNA collocation BEM solution for C ¼ ð0; 1Þ � f0g and incident direction ð1;�1Þ=
ffiffiffi

2
p

, with p ¼ 8.

a Real part of the total field ui þ us8 for k ¼ 128. b, c Real part of the boundary solution v8, along with the

amplitudes jv�1;8j, for k ¼ 128 and 512 respectively
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For easier comparison with the best approximation theory (Theorem 3) it would be

preferable to compute the ~H�1=2ðCÞ norm (which is possible via an appropriate single layer

boundary integral representation, see e.g. [11, §7]), but here we choose the L1ðCÞ norm

because it is easier to evaluate, and also because convergence of the boundary solution in

L1ðCÞ implies, via a straightforward integral estimation, the convergence in supremum

norm of the domain solution (on compact subsets of D) and the far-field pattern (cf. (35)

below), which we study in Fig. 5c, d. We compute our L1ðCÞ norms by composite

Gaussian quadrature with 20 Gauss points per element on a graded mesh, built by inter-

secting the overlapping meshes used to approximate v12, with additional subdivision of the

larger elements to ensure that no element is longer than one wavelength 2p=k.

Figure 5a demonstrates that our approximation of the boundary solution converges

exponentially (in L1ðCÞ) as we increase the polynomial degree p. Moreover, for fixed p the

L1 error is not only bounded but actually decreases with increasing k.

In Fig. 5b we present the same results, plotted against the fourth root of the total CPU

time for the BEM assembly and solve. The rationale behind this comparison is as follows.

Our approximation space VN for this problem has dimension N ¼ Oðp2Þ (maximal

Fig. 5 Convergence with respect to increasing maximum polynomial degree p, for various wavenumbers

k. a L1 error on C against p, b L1 error on C against CPU time, c, d L1 error in the near and far field against
p
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polynomial degree p over two overlapping meshes of 2ðpþ 1Þ elements each). And with a

fixed oversampling parameter COS ¼ 1:25, the number of collocation points M � COSN

also scales like Oðp2Þ. Hence the number of elements in the BEM matrix scales like

MN ¼ Oðp4Þ with increasing p. The linear systems we use are moderate in size (typically

N	 1000) and are rapidly solved using our truncated SVD approach. As a result, the

majority of the CPU time is spent assembling the discrete system, which means that total

CPU time scales like Oðp4Þ. Therefore, to scrutinize the performance of our numerical

quadrature scheme for evaluating the BEM matrix entries by a direct comparison with

Fig. 5a, we should plot the boundary error against the fourth root of the CPU time. The

results in Fig. 5b demonstrate that our quadrature scheme (based on numerical steepest

descent) is both accurate and efficient, and results in a fully discrete BEM for which the

error at a fixed computational cost is bounded (in fact, decreases) with increasing k. The

timings in Fig. 5b are for a desktop PC with an Intel i7-4790 3.60GHz 4-core CPU, with

matrix assembly done in parallel using a Matlab parfor loop. They show that highly

accurate solutions can be obtained for essentially arbitrarily high frequencies in just a few

seconds on a standard machine.

In Fig. 5c, d we plot the corresponding near-field errors

Rel. L1 err. in near-field :¼
kusp � us12kL1ðOÞ

kus12kL1ðOÞ
; ð33Þ

where O is the circle of radius one centred at (0.5, 0), and far-field errors

Rel. L1 err. in far-field :¼
ku1p � u112kL1ð0;2pÞ

ku112kL1ð0;2pÞ
: ð34Þ

As for the boundary solution, we observe exponential convergence as p increases with

k fixed, and bounded errors as k increases for p fixed.

In Fig. 6 we show analogous results for the case of grazing incidence, with d ¼ ð0;�1Þ.
A plot of the corresponding total field is shown in Fig. 6a and plots of the near- and far-

field errors are shown in Fig. 6b, c. As before we see exponential convergence with

increasing p, and no significant increase in error for increasing k. Relative errors are an

order of magnitude larger than in the non-grazing example, because in this case there is no

geometrical optics component (W ¼ 0), so the scattered fields are purely diffractive and

hence smaller in maximum magnitude.

Comparing Figs. 5d and 6c, we observe that in the far field the accuracy noticeably

improves as k increases in the case of non-grazing incidence, but not in the case of grazing

incidence. This is due to the fact that the far-field pattern u1 has peaks of magnitude

proportional to jd2jk at the values of h corresponding to the reflected and shadow directions

(cf. Fig. 8a), associated with the contribution of the geometrical optics term W.2 Hence the

denominator in the relative L1 error will be O(k) for non-grazing incidence, while the

numerator is not expected to be comparably large because the contribution from W is

2 This contribution is found by substituting WðxðsÞÞ ¼ �2ikjd2jeikd1s for v(s) in (31). For example, for
eC ¼ ð0; 1Þ we compute

2ikjd2j
Z 1

0

eiksðd1�cos hÞ ds ¼ 2ikjd2j
eikðd1�cos hÞ � 1

ikðd1 � cos hÞ ;

which takes the value 2ikjd2j when cos h ¼ d1.
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computed exactly (up to quadrature error), and hence does not contribute to the dis-

cretization error.

7.2 Collocation parameters

Our choices of oversampling parameter COS ¼ 1:25 and SVD truncation parameter � ¼
10�8 in the previous section were based on the results of extensive numerical testing. In

this section we report a small subset of these results, to illustrate the effect of changing

these parameters. All results in this section relate to the case C ¼ ð0; 1Þ � f0g with

d ¼ ð1;�1Þ=
ffiffiffi

2
p

, as in Figs. 4 and 5.

In Fig. 7 we present plots showing the dependence of the L1ðCÞ solution error, for

p 2 f2; . . .; 8g, on the oversampling ratio M/N, which is a function of the oversampling

parameter COS. The left-hand plots correspond to wavenumber k ¼ 256 and the right-hand

plots to k ¼ 65536, while the top, middle and bottom plots correspond to the SVD trun-

cation thresholds � ¼ 10�4, � ¼ 10�8 and � ¼ 10�12, respectively. In each case tests were

run for COS 2 f1; 1:05; 1:1; . . .; 2g; note that for the non-integer values of COS the resulting

values of M/N are in general larger than COS (recall (19)). As the reference solution we use

the solution with p ¼ 12 and COS ¼ 2.

In interpreting these plots we focus first on the results for COS ¼ 1 (M=N ¼ 1), which

corresponds to a square system (no oversampling). The need for oversampling is clear from

the fact that in all six plots the errors for COS ¼ M=N ¼ 1 are not monotonically

decreasing with increasing p. That is, increasing the dimension of the approximation space

Fig. 6 Analogue of Figs. 4a, 5c, d for the case of grazing incidence
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VN does not necessarily lead to a more accurate solution. (Further results for this square

case can be found in [48].)

Fig. 7 Dependence of solution accuracy on the oversampling parameter COS and the truncation parameter �
for moderate (k ¼ 256, left-hand plots) and large (k ¼ 65536, right-hand plots) wavenumbers and varying
polynomial degree p. The values of COS used are f1; 1:05; 1:1; . . .; 2g, but the resulting ratio M/N between
the number of collocation points and the number of unknowns is in general slightly larger than COS (recall
(19)). The data points corresponding to COS ¼ 1:25 are shown with large markers
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By contrast, at least in plots (c)–(f) of Fig. 7, for all fixed values of COS [ 1 considered,

the error is monotonically decreasing with increasing p. Since computational cost is pro-

portional to M, it is desirable to take COS as small as possible while maintaining this

monotonicity. But for COS close to 1 there are still visible instabilities. On the basis of our

experiments it seems that COS � 1:25 is sufficient to ensure stability for all the problems we

considered. (The data points corresponding to the choice COS ¼ 1:25 are shown with larger

markers to make this transition more clear.) Significantly, and perhaps surprisingly, the

amount of oversampling required to stabilise the method appears to be independent of the

wavenumber k, as one sees, for example, by comparing Figs. 7c (moderate k) and 7d

(larger k), and recalling the convergence plots in Fig. 5a, b, which reach wavenumber

k ¼ 262; 144 with no discernable loss of stability.

To interpret the dependence of the results on the SVD truncation parameter �, it is

instructive to recall Lemma 1, which, while not directly providing information about the

error in our boundary solution (as explained in §5), still provides some intuition. On the

one hand, since the argument of the infimum on the right-hand side of (21) is a linearly

increasing function of �, we expect that if � is taken to be too large, the discrete residual for

the SVD solution may be large, leading to a loss in accuracy of the boundary solution. This

effect can be clearly observed by comparing Fig. 7c, d (� ¼ 10�8), where we see clear

exponential convergence as p increases, with Fig. 7a, b (� ¼ 10�4), where errors appear to

stagnate around p ¼ 5. On the other hand, looking again at (21), we expect that if � is taken

to be too small, the SVD solver may select a solution with a large coefficient norm, in

which case our numerical solution may suffer from spurious oscillations between the

collocation points, or other numerical instabilities that might increase the L1ðCÞ error. This

degradation in accuracy for small � can be observed by comparing Fig. 7c, d (� ¼ 10�8),

with Fig. 7e, f (� ¼ 10�12). Based on extensive testing we found that the choice � ¼ 10�8

gave satisfactory performance for all the examples we considered.

7.3 Scattering by a Cantor set

In this section we present an application of our HNA BEM to high frequency scattering by

the middle-third Cantor set. The mathematical analysis of acoustic scattering by fractal

screens, of which the Cantor set is an example, was developed recently in [9] and [11],

with the latter providing a rigorous convergence theory for an approximation strategy

based on conventional Galerkin BEM using piecewise constant basis functions, along with

numerical results for low frequency scattering in both two and three dimensions by a range

of fractal screens. For two-dimensional scattering by the Cantor set, the HNA BEM pre-

sented in the current paper allows us to investigate the high frequency regime, and to our

knowledge this is the first time that high frequency BEM simulations of scattering by

fractal screens have been presented in the literature. Fractals, which one might define

loosely as ‘‘sets possessing geometric detail on every lengthscale’’, arise in numerous

scattering applications, including the human lung and other dendritic structures in medical

science [42], snowflakes, ice crystals and other atmospheric particles in climate science

[51], fractal antennas for electromagnetic wave transmission/reception [24], fractal

piezoelectric ultrasound transducers [45], and fractal aperture problems in laser physics

[14]; for further references see [11]. The case of high frequency scattering by fractals is

particularly intriguing, because even though the diameter of the scatterer may be large

compared to the wavelength, the scatterer always possesses sub-wavelength structure, so

standard ray-based high frequency approximations do not apply. In his 1979 paper on
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Fig. 8 Radial plots of log10 ju18 ðhÞj for k ¼ 1024 and prefractal levels j ¼ 0; . . .; 5, for scattering by the

middle-third Cantor set
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random phase screens [3], Berry describes this case as ‘‘a new regime in wave physics’’ in

which the scattered waves adopt ‘‘unfamiliar forms that should be studied in their own

right’’.

In practical applications and numerical simulations one generally works with ‘‘pre-

fractal’’ approximations in which the fractal structure is truncated at some level. The

standard prefractals for the middle-third Cantor set are defined as follows. Letting

Cð0Þ ¼ ð0; 1Þ � f0g, for j 2 N we construct the jth prefractal CðjÞ by removing the (closed)

middle third from each disjoint interval making up the previous prefractal Cðj�1Þ, so that

e.g. Cð1Þ ¼ ðð0; 1=3Þ [ ð2=3; 1ÞÞ � f0g. That the BIE solutions for sound-soft scattering on

the prefractals converge to a well-defined non-zero limiting BIE solution on the underlying

fractal was proved in [9, Example 8.2] (and see also [11, Prop. 6.1]).

A plot of the total field for scattering by Cð2Þ with incident direction d ¼ ð1;�1Þ=
ffiffiffi

2
p

,

computed using our collocation HNA BEM, was presented in Fig. 1. In Fig. 8 we present

radial plots of

maxflog10 ju18 j;�1g;

for the first six prefractals Cð0Þ; . . .Cð5Þ, with k ¼ 1024 and d ¼ ð1;�1Þ=
ffiffiffi

2
p

. The log scales

are truncated at �1 to leave space in the centre of the plots for the corresponding pre-

fractals to be plotted. Corresponding L1ðCÞ convergence plots are presented in Fig. 9,

where, for each j ¼ 0; . . .; 5 we take as reference solution the corresponding solution with

p ¼ 10. The fact that the absolute L1ðCÞ error in our boundary solution with p ¼ 8 is

smaller than 10�1 for all j ¼ 0; . . .; 5 implies that our far-field plots in Fig. 8 are also

accurate to 10�1 absolute error, since

ju1p j 	 kvpkL1ðCÞ: ð35Þ

We note that at k ¼ 1024 the lowest order prefractal Cð0Þ is approximately 160 wave-

lengths long, and each component of the highest order prefractal Cð5Þ is approximately one

wavelength long. While the far-field patterns for Cð4Þ and Cð5Þ are similar, they are clearly

not identical, which is to be expected since in refining Cð4Þ to Cð5Þ we are making

wavelength-scale changes to the scatterer geometry. Hence for Cð5Þ we are still in the ‘‘pre-

asymptotic’’ regime with regard to convergence to the solution for scattering by the

Fig. 9 Convergence of the
boundary solution with
increasing p for k ¼ 1024 and
prefractal levels j ¼ 0; . . .; 5, for
scattering by the middle-third
Cantor set
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limiting fractal screen. (The asymptotic regime is considered in [11] using a conventional

BEM approach.) We emphasize that our HNA method can handle much larger

wavenumbers than k ¼ 1024, but at very large wavenumbers the far-field plots are so

oscillatory they are difficult to interpret, so we do not present them here.
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