7 research outputs found

    Classification of Distal Growth Plate Ossification States of the Radius Bone Using a Dedicated Ultrasound Device and Machine Learning Techniques for Bone Age Assessments

    Get PDF
    X-ray imaging, based on ionizing radiation, can be used to determine bone age by examining distal growth plate fusion in the ulna and radius bones. Legal age determination approaches based on ultrasound signals exist but are unsuitable to reliably determine bone age. We present a low-cost, mobile system that uses one-dimensional ultrasound radio frequency signals to obtain a robust binary classifier enabling the determination of bone age from data of girls and women aged 9 to 24 years. These data were acquired as part of a clinical study conducted with 148 subjects. Our system detects the presence or absence of the epiphyseal plate by moving ultrasound array transducers along the forearm, measuring reflection and transmission signals. Even though classical digital signal processing methods did not achieve a robust classifier, we achieved an F1 score of approximately 87% for binary classification of completed bone growth with machine learning approaches, such as the gradient boosting machine method CatBoost. We demonstrate that our ultrasound system can classify the fusion of the distal growth plate of the radius bone and the completion of bone growth with high accuracy. We propose a non-ionizing alternative to established X-ray imaging methods for this purpose

    Classifying Muscle States with One-Dimensional Radio-Frequency Signals from Single Element Ultrasound Transducers

    No full text
    The reliable assessment of muscle states, such as contracted muscles vs. non-contracted muscles or relaxed muscles vs. fatigue muscles, is crucial in many sports and rehabilitation scenarios, such as the assessment of therapeutic measures. The goal of this work was to deploy machine learning (ML) models based on one-dimensional (1-D) sonomyography (SMG) signals to facilitate low-cost and wearable ultrasound devices. One-dimensional SMG is a non-invasive technique using 1-D ultrasound radio-frequency signals to measure muscle states and has the advantage of being able to acquire information from deep soft tissue layers. To mimic real-life scenarios, we did not emphasize the acquisition of particularly distinct signals. The ML models exploited muscle contraction signals of eight volunteers and muscle fatigue signals of 21 volunteers. We evaluated them with different schemes on a variety of data types, such as unprocessed or processed raw signals and found that comparatively simple ML models, such as Support Vector Machines or Logistic Regression, yielded the best performance w.r.t. accuracy and evaluation time. We conclude that our framework for muscle contraction and muscle fatigue classifications is very well-suited to facilitate low-cost and wearable devices based on ML models using 1-D SMG

    Classification of Distal Growth Plate Ossification States of the Radius Bone Using a Dedicated Ultrasound Device and Machine Learning Techniques for Bone Age Assessments

    No full text
    X-ray imaging, based on ionizing radiation, can be used to determine bone age by examining distal growth plate fusion in the ulna and radius bones. Legal age determination approaches based on ultrasound signals exist but are unsuitable to reliably determine bone age. We present a low-cost, mobile system that uses one-dimensional ultrasound radio frequency signals to obtain a robust binary classifier enabling the determination of bone age from data of girls and women aged 9 to 24 years. These data were acquired as part of a clinical study conducted with 148 subjects. Our system detects the presence or absence of the epiphyseal plate by moving ultrasound array transducers along the forearm, measuring reflection and transmission signals. Even though classical digital signal processing methods did not achieve a robust classifier, we achieved an F1 score of approximately 87% for binary classification of completed bone growth with machine learning approaches, such as the gradient boosting machine method CatBoost. We demonstrate that our ultrasound system can classify the fusion of the distal growth plate of the radius bone and the completion of bone growth with high accuracy. We propose a non-ionizing alternative to established X-ray imaging methods for this purpose

    Real-Time Volumetric Ultrasound Research Platform with 1024 Parallel Transmit and Receive Channels

    No full text
    Volumetric ultrasound imaging is of great importance in many medical fields, especially in cardiology, but also in therapy monitoring applications. For development of new imaging technologies and scanning strategies, it is crucial to be able to use a hardware platform that is as free and flexible as possible and does not restrict the user in his research in any way. For this purpose, multi-channel ultrasound systems are particularly suitable, as they are able to control each individual element of a matrix array without the use of a multiplexer. We set out to develop a fully integrated, compact 1024-channel ultrasound system that provides full access to all transmission parameters and all digitized raw data of each transducer element. For this purpose, we synchronize four research scanners of our latest “DiPhAS” ultrasound research system generation, each with 256 parallel channels, all connected to a single PC on whose GPUs the entire signal processing is performed. All components of the system are housed in a compact, movable 19-inch rack. The system is designed as a general-purpose platform for research in volumetric imaging; however, the first-use case will be therapy monitoring by tracking radiation-sensitive ultrasound contrast agents
    corecore