8 research outputs found

    Biochemical pathways analysis of microarray results: regulation of myogenesis in pigs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Combining microarray results and biological pathway information will add insight into biological processes. Pathway information is widely available in databases through the internet.</p> <p>Mammalian muscle formation has been previously studied using microarray technology in pigs because these animals are an interesting animal model for muscle formation due to selection for increased muscle mass. Results indicated regulation of the expression of genes involved in proliferation and differentiation of myoblasts, and energy metabolism. The aim of the present study was to analyse microarrays studying myogenesis in pigs. It was necessary to develop methods to search biochemical pathways databases.</p> <p>Results</p> <p>PERL scripts were developed that used the names of the genes on the microarray to search databases. Synonyms of gene names were added to the list by searching the Gene Ontology database. The KEGG database was searched for pathway information using this updated gene list. The KEGG database returned 88 pathways. Most genes were found in a single pathway, but others were found in up to seven pathways. Combining the pathways and the microarray information 21 pathways showed sufficient information content for further analysis. These pathways were related to regulation of several steps in myogenesis and energy metabolism. Pathways regulating myoblast proliferation and muscle fibre formation were described. Furthermore, two networks of pathways describing the formation of the myoblast cytoskeleton and regulation of the energy metabolism during myogenesis were presented.</p> <p>Conclusion</p> <p>Combining microarray results and pathways information available through the internet provide biological insight in how the process of porcine myogenesis is regulated.</p

    Mapping carcass and meat quality QTL on Sus Scrofa chromosome 2 in commercial finishing pigs

    Get PDF
    Quantitative trait loci (QTL) affecting carcass and meat quality located on SSC2 were identified using variance component methods. A large number of traits involved in meat and carcass quality was detected in a commercial crossbred population: 1855 pigs sired by 17 boars from a synthetic line, which where homozygous (A/A) for IGF2. Using combined linkage and linkage disequilibrium mapping (LDLA), several QTL significantly affecting loin muscle mass, ham weight and ham muscles (outer ham and knuckle ham) and meat quality traits, such as Minolta-L* and -b*, ultimate pH and Japanese colour score were detected. These results agreed well with previous QTL-studies involving SSC2. Since our study is carried out on crossbreds, different QTL may be segregating in the parental lines. To address this question, we compared models with a single QTL-variance component with models allowing for separate sire and dam QTL-variance components. The same QTL were identified using a single QTL variance component model compared to a model allowing for separate variances with minor differences with respect to QTL location. However, the variance component method made it possible to detect QTL segregating in the paternal line (e.g. HAMB), the maternal lines (e.g. Ham) or in both (e.g. pHu). Combining association and linkage information among haplotypes improved slightly the significance of the QTL compared to an analysis using linkage information only

    Number and mode of inheritance of QTL influencing backfat thickness on SSC2p in Sino-European pig pedigrees

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the pig, multiple QTL associated with growth and fatness traits have been mapped to chromosome 2 (SSC2) and among these, at least one shows paternal expression due to the IGF2-intron3-G3072A substitution. Previously published results on the position and imprinting status of this QTL disagree between analyses from French and Dutch F2 crossbred pig populations obtained with the same breeds (Meishan crossed with Large White or Landrace).</p> <p>Methods</p> <p>To study the role of paternal and maternal alleles at the IGF2 locus and to test the hypothesis of a second QTL affecting backfat thickness on the short arm of SSC2 (SSC2p), a QTL mapping analysis was carried out on a combined pedigree including both the French and Dutch F2 populations, on the progeny of F1 males that were heterozygous (A/G) and homozygous (G/G) at the IGF2 locus. Simulations were performed to clarify the relations between the two QTL and to understand to what extent they can explain the discrepancies previously reported.</p> <p>Results</p> <p>The QTL analyses showed the segregation of at least two QTL on chromosome 2 in both pedigrees, i.e. the IGF2 locus and a second QTL segregating at least in the G/G F1 males and located between positions 30 and 51 cM. Statistical analyses highlighted that the maternally inherited allele at the IGF2 locus had a significant effect but simulation studies showed that this is probably a spurious effect due to the segregation of the second QTL.</p> <p>Conclusions</p> <p>Our results show that two QTL on SSC2p affect backfat thickness. Differences in the pedigree structures and in the number of heterozygous females at the IGF2 locus result in different imprinting statuses in the two pedigrees studied. The spurious effect observed when a maternally allele is present at the IGF2 locus, is in fact due to the presence of a second closely located QTL. This work confirms that pig chromosome 2 is a major region associated with fattening traits.</p

    The Imprinted Gene DIO3 Is a Candidate Gene for Litter Size in Pigs

    Get PDF
    Genomic imprinting is an important epigenetic phenomenon, which on the phenotypic level can be detected by the difference between the two heterozygote classes of a gene. Imprinted genes are important in both the development of the placenta and the embryo, and we hypothesized that imprinted genes might be involved in female fertility traits. We therefore performed an association study for imprinted genes related to female fertility traits in two commercial pig populations. For this purpose, 309 SNPs in fifteen evolutionary conserved imprinted regions were genotyped on 689 and 1050 pigs from the two pig populations. A single SNP association study was used to detect additive, dominant and imprinting effects related to four reproduction traits; total number of piglets born, the number of piglets born alive, the total weight of the piglets born and the total weight of the piglets born alive. Several SNPs showed significant () additive and dominant effects and one SNP showed a significant imprinting effect. The SNP with a significant imprinting effect is closely linked to DIO3, a gene involved in thyroid metabolism. The imprinting effect of this SNP explained approximately 1.6% of the phenotypic variance, which corresponded to approximately 15.5% of the additive genetic variance. In the other population, the imprinting effect of this QTL was not significant (), but had a similar effect as in the first population. The results of this study indicate a possible association between the imprinted gene DIO3 and female fertility traits in pigs

    The Figure shows an example of the connection of the KEGG pathways Focal adhesion (partial pathway, Green genes) and MAPK signalling (partial pathway, blue genes)

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Biochemical pathways analysis of microarray results: regulation of myogenesis in pigs"</p><p>http://www.biomedcentral.com/1471-213X/7/66</p><p>BMC Developmental Biology 2007;7():66-66.</p><p>Published online 13 Jun 2007</p><p>PMCID:PMC1919358.</p><p></p> Both biochemical pathways indicate connections to each other (indicated in the boxes) and gene profiles were produced on the microarray

    The workflow diagram describing the individual steps taken by the software from microarray data to physiological understanding via pathways analysis

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Biochemical pathways analysis of microarray results: regulation of myogenesis in pigs"</p><p>http://www.biomedcentral.com/1471-213X/7/66</p><p>BMC Developmental Biology 2007;7():66-66.</p><p>Published online 13 Jun 2007</p><p>PMCID:PMC1919358.</p><p></p> Step 1: A PERL script uses a text file with a list of all genes on the microarray to search the Gene Ontology database for synonyms. These Synonyms are added to the gene list. Step 2 uses this updated gene list to search the KEGG pathway database for pathways in which the genes are involved. If one or more pathways were found for a gene the KEGG database returns a list of pathway names for that gene and a link to the reference pathway for each pathway. Both are added to the file. Step 3 combines the results of the microarray and the pathways. All genes of the pathway represented on the microarray have an expression pattern consisting of the expression in the Longissimus muscle at seven time points during gestation. First all genes of the pathway are considered. Secondly, if more than one biochemical path is specified by the pathway (i.e. called subpathways) the individual subpathways are investigated separately. Thirdly, if KEGG-pathways are linked either because the pathway indicates it or because at least one gene is found in two or more pathways, a network of these pathways is constructed. In step 4 the expression patterns of these pathways and networks were analysed for comparable expression patterns that may indicate common regulatory events linking genes in pathways, subpathways, or networks of pathways creating biological understanding of the physiology of the studied processes
    corecore