4 research outputs found

    Reproducibility in the absence of selective reporting : An illustration from large-scale brain asymmetry research

    Get PDF
    Altres ajuts: Max Planck Society (Germany).The problem of poor reproducibility of scientific findings has received much attention over recent years, in a variety of fields including psychology and neuroscience. The problem has been partly attributed to publication bias and unwanted practices such as p-hacking. Low statistical power in individual studies is also understood to be an important factor. In a recent multisite collaborative study, we mapped brain anatomical left-right asymmetries for regional measures of surface area and cortical thickness, in 99 MRI datasets from around the world, for a total of over 17,000 participants. In the present study, we revisited these hemispheric effects from the perspective of reproducibility. Within each dataset, we considered that an effect had been reproduced when it matched the meta-analytic effect from the 98 other datasets, in terms of effect direction and significance threshold. In this sense, the results within each dataset were viewed as coming from separate studies in an "ideal publishing environment," that is, free from selective reporting and p hacking. We found an average reproducibility rate of 63.2% (SD = 22.9%, min = 22.2%, max = 97.0%). As expected, reproducibility was higher for larger effects and in larger datasets. Reproducibility was not obviously related to the age of participants, scanner field strength, FreeSurfer software version, cortical regional measurement reliability, or regional size. These findings constitute an empirical illustration of reproducibility in the absence of publication bias or p hacking, when assessing realistic biological effects in heterogeneous neuroscience data, and given typically-used sample sizes

    Beneficial and nature-based sediment use - Experiences from Dutch pilots

    No full text
    The natural sediment cycle is disrupted and impacted by human interventions world-wide, such as dams in rivers, port developments in estuaries, dredging activities for the maintenance of existing ports and waterways, and pollution from industrial activities. Coasts, shores, lakes and rivers suffer from an imbalance in sediment quantity and poor sediment quality. This impacts human industrial activities (e.g. navigation, logistic and tourism), life and safety (e.g. space for living, flood safety, food security and loss of productivity). In addition, shortage of sand cause by excessive sand mining or lack of sand in the environment in many locations of the world brings a special focus on fine and soft sediment, generally considered an unsuitable resource if not a contaminated waste. In line with this world-wide demand, EcoShape - Building with Nature is executing various pilots in the Netherlands and Indonesia to improve knowledge and demonstrate practical nature-based solutions regarding management, use and reuse of (fine and soft) sediments. These pilots are bonded in the EcoShape Living Lab for Mud initiative. These pilots cover the entire range from sediment in suspension to sediment as building material, embedding ecology, operations as well as socio-economic considerations. This presentation will focus on two of these pilots located in the Netherlands: the Mud Motor and de Kleirijperij (also part of the Eems-Dollard 2050 program). The Mud Motor explored potential for beneficial use of dredge sediments to feed salt marshes, through strategic disposal and optimal use of natural processes. The Kleirijperij studies the technical and financial feasibility of turning dredge sediments into clay-soil for dike construction. During the presentations we will focus on technical results as well as governance challenges and triggers critical for the realization of sustainable beneficial sediment use projects. These pilots and this presentation tight also to the 2017 CEDA and the 2018 PIANC working groups on Beneficial Sediment Use.</p

    Beneficial and nature-based sediment use - Experiences from Dutch pilots

    No full text
    The natural sediment cycle is disrupted and impacted by human interventions world-wide, such as dams in rivers, port developments in estuaries, dredging activities for the maintenance of existing ports and waterways, and pollution from industrial activities. Coasts, shores, lakes and rivers suffer from an imbalance in sediment quantity and poor sediment quality. This impacts human industrial activities (e.g. navigation, logistic and tourism), life and safety (e.g. space for living, flood safety, food security and loss of productivity). In addition, shortage of sand cause by excessive sand mining or lack of sand in the environment in many locations of the world brings a special focus on fine and soft sediment, generally considered an unsuitable resource if not a contaminated waste. In line with this world-wide demand, EcoShape - Building with Nature is executing various pilots in the Netherlands and Indonesia to improve knowledge and demonstrate practical nature-based solutions regarding management, use and reuse of (fine and soft) sediments. These pilots are bonded in the EcoShape Living Lab for Mud initiative. These pilots cover the entire range from sediment in suspension to sediment as building material, embedding ecology, operations as well as socio-economic considerations. This presentation will focus on two of these pilots located in the Netherlands: the Mud Motor and de Kleirijperij (also part of the Eems-Dollard 2050 program). The Mud Motor explored potential for beneficial use of dredge sediments to feed salt marshes, through strategic disposal and optimal use of natural processes. The Kleirijperij studies the technical and financial feasibility of turning dredge sediments into clay-soil for dike construction. During the presentations we will focus on technical results as well as governance challenges and triggers critical for the realization of sustainable beneficial sediment use projects. These pilots and this presentation tight also to the 2017 CEDA and the 2018 PIANC working groups on Beneficial Sediment Use.</p

    Algorithm-based care versus usual care for the early recognition and management of complications after pancreatic resection in the Netherlands: an open-label, nationwide, stepped-wedge cluster-randomised trial

    No full text
    Background: Early recognition and management of postoperative complications, before they become clinically relevant, can improve postoperative outcomes for patients, especially for high-risk procedures such as pancreatic resection. Methods: We did an open-label, nationwide, stepped-wedge cluster-randomised trial that included all patients having pancreatic resection during a 22-month period in the Netherlands. In this trial design, all 17 centres that did pancreatic surgery were randomly allocated for the timing of the crossover from usual care (the control group) to treatment given in accordance with a multimodal, multidisciplinary algorithm for the early recognition and minimally invasive management of postoperative complications (the intervention group). Randomisation was done by an independent statistician using a computer-generated scheme, stratified to ensure that low–medium-volume centres alternated with high-volume centres. Patients and investigators were not masked to treatment. A smartphone app was designed that incorporated the algorithm and included the daily evaluation of clinical and biochemical markers. The algorithm determined when to do abdominal CT, radiological drainage, start antibiotic treatment, and remove abdominal drains. After crossover, clinicians were trained in how to use the algorithm during a 4-week wash-in period; analyses comparing outcomes between the control group and the intervention group included all patients other than those having pancreatic resection during this wash-in period. The primary outcome was a composite of bleeding that required invasive intervention, organ failure, and 90-day mortality, and was assessed by a masked adjudication committee. This trial was registered in the Netherlands Trial Register, NL6671. Findings: From Jan 8, 2018, to Nov 9, 2019, all 1805 patients who had pancreatic resection in the Netherlands were eligible for and included in this study. 57 patients who underwent resection during the wash-in phase were excluded from the primary analysis. 1748 patients (885 receiving usual care and 863 receiving algorithm-centred care) were included. The primary outcome occurred in fewer patients in the algorithm-centred care group than in the usual care group (73 [8%] of 863 patients vs 124 [14%] of 885 patients; adjusted risk ratio [RR] 0·48, 95% CI 0·38–0·61; p<0·0001). Among patients treated according to the algorithm, compared with patients who received usual care there was a decrease in bleeding that required intervention (47 [5%] patients vs 51 [6%] patients; RR 0·65, 0·42–0·99; p=0·046), organ failure (39 [5%] patients vs 92 [10%] patients; 0·35, 0·20–0·60; p=0·0001), and 90-day mortality (23 [3%] patients vs 44 [5%] patients; 0·42, 0·19–0·92; p=0·029). Interpretation: The algorithm for the early recognition and minimally invasive management of complications after pancreatic resection considerably improved clinical outcomes compared with usual care. This difference included an approximate 50% reduction in mortality at 90 days. Funding: The Dutch Cancer Society and UMC Utrecht
    corecore