80 research outputs found

    Avalanche amplification of a single exciton in a semiconductor nanowire

    Full text link
    Interfacing single photons and electrons is a crucial ingredient for sharing quantum information between remote solid-state qubits. Semiconductor nanowires offer the unique possibility to combine optical quantum dots with avalanche photodiodes, thus enabling the conversion of an incoming single photon into a macroscopic current for efficient electrical detection. Currently, millions of excitation events are required to perform electrical read-out of an exciton qubit state. Here we demonstrate multiplication of carriers from only a single exciton generated in a quantum dot after tunneling into a nanowire avalanche photodiode. Due to the large amplification of both electrons and holes (> 10^4), we reduce by four orders of magnitude the number of excitation events required to electrically detect a single exciton generated in a quantum dot. This work represents a significant step towards single-shot electrical read-out and offers a new functionality for on-chip quantum information circuits

    Mode shifting in school travel mode: examining the prevalence and correlates of active school transport in Ontario, Canada

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies examining the correlates of school transport commonly fail to make the distinction between morning and afternoon school trips. The purpose of this study was to examine the prevalence and correlates of mode shift from passive in the morning to active in the afternoon among elementary and secondary school students in Ontario, Canada.</p> <p>Methods</p> <p>Data were derived from the 2009 cycle of the Ontario Student Drug Use and Health Survey (OSDUHS). 3,633 students in grades 7 through 12 completed self-administered questionnaires. Socio-demographic, behavioural, psychological, and environmental predictors of active school transport (AST) were assessed using logistic regression.</p> <p>Results</p> <p>Overall, 47% and 38% of elementary school students reported AST to and from school, respectively. The corresponding figures were 23% and 32% for secondary school students. The prevalence of AST varied temporarily and spatially. There was a higher prevalence of walking/biking found for elementary school students than for secondary school students, and there was an approximate 10% increase in AST in the afternoon. Different correlates of active school transport were also found across elementary and secondary school students. For all ages, students living in urban areas, with a shorter travel time between home and school, and having some input to the decision making process, were more likely to walk to and from school.</p> <p>Conclusions</p> <p>Future research examining AST should continue to make the analytic distinction between the morning and afternoon trip, and control for the moderating effect of age and geography in predicting mode choice. In terms of practice, these variations highlight the need for school-specific travel plans rather than 'one size fits all' interventions in promoting active school transport.</p

    A luminescence study of doping effects in InP-based radial nanowire structures

    No full text
    We have used micro-photo- and cathodo-luminescence at low temperatures to study the effects of sulphur doping in InP and radial InP/InAs/InP structured nanowires. Samples with pure wurtzite crystal structure, with modulated wurtzite/zincblende crystal structure and with different radial InAs growth times were investigated. We observed a doping concentration gradient along the nanowires, the location of segments of different crystal structure and thickness fluctuations on the monolayer scale of the InAs layer
    • …
    corecore