185 research outputs found

    Sex-based differences in movement and space use of the blacktip reef shark, Carcharhinus melanopterus

    Get PDF
    Information on the spatial ecology of reef sharks is critical to understanding life-history patterns, yet gaps remain in our knowledge of how these species move and occupy space. Previous studies have focused on offshore reefs and atolls with little information available on the movement and space use of sharks utilising reef habitats closer to shore. Cross-shelf differences in physical and biological properties of reefs can alter regional ecosystem processes resulting in different movement patterns for resident sharks. Passive acoustic telemetry was used to examine residency, space use and depth use of 40 blacktip reef sharks, Carcharhinus melanopterus, on an inshore reef in Queensland, Australia, and assess temporal or biological influences. All sharks showed strong site-attachment to inshore reefs with residency highest among adult females. Sharks exhibited a sex-based, seasonal pattern in space use where males moved more, occupied more space and explored new areas during the reproductive season, while females utilised the same amount of space throughout the year, but shifted the location of the space used. A positive relationship was also observed between space use and size. There was evidence of seasonal site fidelity and long-distance movement with the coordinated, annual migration of two adult males to the study site during the mating season. Depth use was segregated with some small sharks occupying shallower depths than adults throughout the day and year, most likely as refuge from predation. Results highlight the importance of inshore reef habitats to blacktip reef sharks and provide evidence of connectivity with offshore reefs, at least for adult males

    Nearshore movement ecology of a medium-bodied shark, the creek whaler Carcharhinus fitzroyensis

    Get PDF
    Background: The movement and habitat use patterns of medium-bodied nearshore sharks are poorly understood. However, these species face some of the highest levels of exposure to anthropogenic development. The habitat and space use strategies species exhibit affect their role within communities and how they respond to environmental change. The present study used passive acoustic telemetry to evaluate the residency, space use, and habitat use patterns of the creek whaler Carcharhinus fitzroyensis in a nearshore embayment in Queensland, Australia. Results: Individuals were monitored for approximately 18 months. Half of the monitored population were highly resident to the bay. In contrast, several individuals spent less than 2 weeks in the bay, suggesting that broader movements may occur in a portion of the population. Size had no effect on residency. Activity space size varied between months and time of day but was also not affected by animal size. All C. fitzroyensis spent the majority of time in seagrass habitat (70%) and deep water (>5 m) mud substrate (20%). Shallow mudflat, sandy inshore, and reef habitats were rarely used (7%). Although the sample size of immature individuals was relatively small, results indicated immature and mature C. fitzroyensis shared space and habitats. Conclusions: Overall, C. fitzroyensis used a combination of nearshore movement patterns typically exhibited by small- and large-bodied species. The movement patterns exhibited by C. fitzroyensis suggest that this species has a moderately high degree of seagrass habitat specialisation. Seagrass habitat is typically highly productive and may be an important foraging habitat for this species. Given the consistent use of seagrass habitat, C. fitzroyensis are likely vulnerable to population decline as a result of seagrass habitat loss. Future research should continue to investigate the unique movements of medium-bodied sharks

    Movements and space use of giant trevally in coral reef habitats and the importance of environmental drivers

    Get PDF
    Background: Effective conservation of large predators requires a broad understanding of their ecology. Caranx ignobilis is a large marine predator well represented in coral reef environments, yet they are poorly studied. Passive acoustic monitoring was used to track the movements of 20 C. ignobilis at offshore reefs in the central Great Barrier Reef from 2012 to 2014. Using a modelling approach, temporal changes in movement patterns of C. ignobilis were explored to determine if individuals exhibited predictable movement patterns. The effects of biological and environmental variables on monthly space use, daily presence and hourly depth use were investigated to define any response to environmental changes. Results: Caranx ignobilis typically remained at their capture reef with 98.8% of detections recorded at these locations. Individuals were recorded in the study site for periods from 9 to 335 days (mean = 125.9) with a mean residency index of 0.53, indicating movements away from the reef or out of detection range occurred on the scale of days. Inter-reef movements from only three individuals were recorded which coincided with the summer full moon so may have been related to spawning behaviour. Environmental drivers were correlated with daily presence and hourly depth use of C. ignobilis but had little influence on monthly space use. There was little or no effect of fish size on space use, presence and depth use. Conclusion: By improving the current understanding of movement patterns of this large teleost among individual coral reefs, the results of this study reveal that site attachment may be present and that environmental parameters play a role in observed movement patterns related to depth and presence. These data provide useful information for the development of management plans, particularly in relation to space-based protection

    Quick fix GPS technology highlights risk to dugongs moving between protected areas

    Get PDF
    Incidental capture in fishing gear is the most serious threat to the survival of many species of marine mammals. Fisheries closures developed to protect marine mammals have tended to concentrate on areas of high marine mammal density. Movement corridors have generally been less protected because they are often unknown and difficult to detect. Seagrass meadows in Moreton and Hervey Bays in south-eastern Queensland support significant populations of dugongs Dugong dugon. Pedigree analysis based on genetic and ancillary biological data indicates that there is substantial movement of dugongs between these bays, which are separated by open surf coasts where dugongs are occasionally caught in inshore shark nets set for the protection of bathers. This bycatch suggests that the dugong movement corridor between Moreton and Hervey Bays is close to the coast, a hypothesis not confirmed by nearly 30 yr of dugong satellite tracking using platform transmitter terminal (PTT) technology. Twenty-nine dugongs were captured in seagrass habitats on the eastern banks of Moreton Bay in 2012-2014 and were fitted with Quick Fix GPS and acoustic transmitters. One animal was captured and tracked twice. Four dugongs were tracked moving from Moreton Bay to Hervey Bay covering distances of 278-338 km over 5-9 d; 1 dugong made the return journey. Three of the 4 animals travelled along and very close to the coast; the exact track of the fourth animal is uncertain. These results suggest that dugongs would benefit from netting closures that extend beyond seagrass meadows

    Demographic characteristics of exploited tropical lutjanids: a comparative analysis

    Get PDF
    Demographic parameters from seven exploited coral reef lutjanid species were compared as a case study of the implications of intrafamily variation in life histories for multispecies harvest management. Modal lengths varied by 4 cm among four species (Lutjanus fulviflamma, L. vitta, L. carponotatus, L. adetii), which were at least 6 cm smaller than the modal lengths of the largest species (L. gibbus, Symphorus nematophorus, Aprion virescens). Modal ages, indicating ages of full selection to fishing gear, were 10 years or less for all species, but maximum ages ranged from 12 (L. gibbus) to 36 years (S. nematophorus). Each species had a unique growth pattern, with differences in length-at-age and mean asymptotic fork length (L∞), but smaller species generally grew fast during the first 1–2 years of life and larger species grew more slowly over a longer period. Total mortality rates varied among species; L. gibbus had the highest mortality and L. fulviflamma, the lowest mortality. The variability in life history strategies of these tropical lutjanids makes generalizations about lutjanid life histories difficult, but the fact that all seven had characteristics that would make them particularly vulnerable to fishing indicates that harvest of tropical lutjanids should be managed with caution

    Large–Scale Movement and Reef Fidelity of Grey Reef Sharks

    Get PDF
    Despite an Indo-Pacific wide distribution, the movement patterns of grey reef sharks (Carcharhinus amblyrhynchos) and fidelity to individual reef platforms has gone largely unstudied. Their wide distribution implies that some individuals have dispersed throughout tropical waters of the Indo-Pacific, but data on large-scale movements do not exist. We present data from nine C. amblyrhynchos monitored within the Great Barrier Reef and Coral Sea off the coast of Australia. Shark presence and movements were monitored via an array of acoustic receivers for a period of six months in 2008. During the course of this monitoring few individuals showed fidelity to an individual reef suggesting that current protective areas have limited utility for this species. One individual undertook a large-scale movement (134 km) between the Coral Sea and Great Barrier Reef, providing the first evidence of direct linkage of C. amblyrhynchos populations between these two regions. Results indicate limited reef fidelity and evidence of large-scale movements within northern Australian waters

    Reef shark science - key questions and future directions

    Get PDF
    The occurrence of sharks on coral reefs has been well documented for decades, especially since the advent of SCUBA diving. Despite this, it is only within the last decade that substantial research effort has been directed at these species. Research effort has increased in conjunction with the realization that reef shark populations have experienced significant declines throughout their distribution. However, trends in declines have been coupled with reports of high abundance in some areas providing confusion about what healthy reef shark populations should look like. Given that coral reefs are among the most biologically diverse and productive habitats, but also are one of the most threatened by climate change due to the effects of rising temperature and declining pH, there is a need to understand reef sharks to better predict consequences for their populations. Studies of reef sharks also have the potential to provide insights into the functioning of their populations and ecosystems more broadly because of the spatially constrained nature of their distributions, and high water visibility in most locations. These aspects make studying reef shark populations integral to understanding coral reef ecosystem dynamics and resilience to pressures. This paper synthesizes a number of key questions about coral reef sharks based on our experience researching this group of species over the past decade. Key research gaps and critical questions include aspects of life history, population dynamics, ecology, behavior, physiology, energetics, and more. This synthesis also considers the methods used to date, and what new and emerging techniques may be available to improve our understanding of reef shark populations. The synthesis will highlight how even basic questions relating to reef shark population sizes, how large they should be, and what impacts do they have on reef ecosystems, remain either unanswered or highly controversial

    Ghosts in the data: false detections in VEMCO pulse position modulation acoustic telemetry monitoring equipment

    Get PDF
    Background: False-positive data (better known as "false detections") in VEMCO VR2 acoustic telemetry monitoring studies that use pulse position modulation coding can cause biased or erroneous outcomes in data analysis. To understand the occurrence of false detections in acoustic monitoring data sets, the results of a range test experiment using eight acoustic receivers and 12 transmitters were examined. Results: One hundred and fifty one tag ID codes were recorded, 137 of which were identified as likely from false detections, 12 were from test tags, and two were from tagged sharks. False detections accounted for < 0.05 % of detections (918) in the experiment. False detection tag ID codes were not randomly distributed amongst the available codes, being more likely to occur at IDs close to tags used in the experiment. Receivers located near the bottom recorded the most false detections and tag ID codes from false detections. Receivers at the same depth did not differ significantly in the mean number of daily false detections. The daily number of false detections recorded by a receiver did not conform to a random pattern, and was not strongly correlated with daily receiver performance. Conclusions: In an era of increasing data sharing and public storage of scientific data, the occurrence of false detections is of significant concern and the results of this study demonstrate that while rare they do occur and can be identified and accounted for in analyses

    Shark conservation hindered by lack of habitat protection

    Get PDF
    Many of the world's shark populations are in decline, indicating the need for improved conservation and management. Well managed and appropriately located marine parks and marine protected areas (MPAs) have potential to enhance shark conservation by restricting fisheries and protecting suitable habitat for threatened shark populations. Here, we used shark occurrence records collected by commercial fisheries to determine suitable habitat for pelagic sharks within the Australian continental Exclusive Economic Zone (EEZ), and to quantify the amount of suitable habitat contained within existing MPAs. We developed generalised linear models using proportional occurrences of pelagic sharks for three families: Alopiidae (thresher), Carcharhinidae (requiem), and Lamnidae (mackerel) sharks. We also considered aggregated species from the Lamnidae and Carcharhinidae families ('combined sharks' in the models). Using a set of environmental predictors known to affect shark occurrence, including chlorophyll-a concentration, salinity, sea surface temperature, and turbidity, as well as geomorphological, geophysical, and sedimentary parameters, we found that models including sea surface temperature and turbidity were ranked highest in their ability to predict shark distributions. We used these results to predict geographic regions where habitat was most suitable for pelagic sharks within the Australian EEZ, and our results revealed that suitable habitat was limited in no-take zones within MPAs. For all shark groupings, suitable habitats were found mostly at locations exposed to fishing pressure, potentially increasing the vulnerability of the pelagic shark species considered. Our predictive models provide a foundation for future spatial planning and shark management, suggesting that strong fisheries management in addition to MPAs is necessary for pelagic shark conservation

    Prioritising search effort to locate previously unknown populations of endangered marine reptiles

    Get PDF
    Strategies aimed to conserve and manage rare species are often hindered by the lack of data needed for their effective design. Incomplete and inaccurate data on habitat associations and current species distributions pose a barrier to effective conservation and management for several species of endemic sea snakes in Western Australia that are thought to be in decline. Here we used a correlative modelling approach to understand habitat associations and identify suitable habitats for five of these species (Aipysurus apraefrontalis, A. foliosquama, A. fuscus, A. l. pooleorum and A. tenuis). We modelled species-specific habitat suitability across 804,244 km(2) of coastal waters along the North-west Shelf of Western Australia, to prioritise future survey regions to locate unknown populations of these rare species. Model projections were also used to quantify the effectiveness of current spatial management strategies (Marine Protected Areas) in conserving important habitats for these species. Species-specific models matched well with the records on which they were trained, and identified additional regions of suitability without records. Subsequent field validation of the model projections uncovered a previously unknown locality for A. fuscus within the mid-shelf shoal region, outside its currently recognised global range. Defining accurate geographic distributions for rare species is a vital first step in defining more robust extent of species occurrence and range overlap with threatening processes
    • …
    corecore