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Abstract

Background: The movement and habitat use patterns of medium-bodied nearshore sharks are poorly understood.
However, these species face some of the highest levels of exposure to anthropogenic development. The habitat
and space use strategies species exhibit affect their role within communities and how they respond to environmental
change. The present study used passive acoustic telemetry to evaluate the residency, space use, and habitat use
patterns of the creek whaler Carcharhinus fitzroyensis in a nearshore embayment in Queensland, Australia.

Results: Individuals were monitored for approximately 18 months. Half of the monitored population were highly
resident to the bay. In contrast, several individuals spent less than 2 weeks in the bay, suggesting that broader
movements may occur in a portion of the population. Size had no effect on residency. Activity space size varied
between months and time of day but was also not affected by animal size. All C. fitzroyensis spent the majority of
time in seagrass habitat (70%) and deep water (>5 m) mud substrate (20%). Shallow mudflat, sandy inshore, and
reef habitats were rarely used (7%). Although the sample size of immature individuals was relatively small, results
indicated immature and mature C. fitzroyensis shared space and habitats.

Conclusions: Overall, C. fitzroyensis used a combination of nearshore movement patterns typically exhibited by
small- and large-bodied species. The movement patterns exhibited by C. fitzroyensis suggest that this species has a
moderately high degree of seagrass habitat specialisation. Seagrass habitat is typically highly productive and may
be an important foraging habitat for this species. Given the consistent use of seagrass habitat, C. fitzroyensis are
likely vulnerable to population decline as a result of seagrass habitat loss. Future research should continue to
investigate the unique movements of medium-bodied sharks.
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Background
Nearshore areas are highly productive and dynamic envi-
ronments that often contain a diverse range of habitat
types, such as seagrass meadows, mangroves, and rocky
and/or sandy substrate [1,2]. As a result of this product-
ivity and diversity, nearshore areas function as important
foraging and nursery grounds for many shark species
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[3,4]. Unfortunately, nearshore ecosystem health and bio-
diversity is in a state of global decline [5,6] due to numer-
ous anthropogenic influences, including coastal pollution
[7], inshore fishing [8], and climate change [9]. Conse-
quently, there is a need to determine how environmental
change in nearshore ecosystems affects shark species.
The majority of shark research in nearshore areas has

investigated the habitat use of large-bodied species (max-
imum total length >150 cm) that use these areas as nursery
grounds (for example, [10-12]). Nearshore areas provide
juvenile sharks with protection from predators and in some
cases productive foraging grounds [13,14]. As a result,
juveniles of large-bodied species are often highly resident
within nearshore areas (for example, [15]). Large-bodied
l. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
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adults use substantially larger amounts of space, spend
more time offshore, and may only use specific nearshore
areas for short periods of time for foraging or pupping
[16,17]. In contrast, juveniles and adults of small-bodied
coastal species (maximum total length 100 cm), such as
the Australian sharpnose shark Rhizoprionodon taylori and
Atlantic sharpnose shark Rhizoprionodon terraenovae,
use the same nearshore habitats simultaneously and are
believed to have large coastal home ranges that include
a wide array of habitats [18,19].
Considerably less data is available on the nearshore

habitat use of medium-bodied coastal species (max-
imum total length 150 cm). As the life history character-
istics of these species are sometimes an intermediate of
those exhibited by large- and small-bodied species [20,21],
medium-bodied coastal species may exhibit unique move-
ment and space use patterns. For example, the medium-
bodied spottail shark Carcharhinus sorrah exhibits high
site fidelity to single nearshore embayments with individ-
uals using small home ranges and consistent habitats [22],
similar to large-bodied juvenile populations. However, at a
population level, C. sorrah use a wide range of coastal hab-
itats and juvenile and adult spottails are known to occupy
the same coastal areas simultaneously [22,23].
The creek whaler Carcharhinus fitzroyensis is a medium-

bodied coastal shark species endemic to northern Australia.
Carcharhinus fitzroyensis most commonly inhabits turbid
nearshore waters but has been caught at depths of up to
40 m [24]. Teleosts and crustaceans constitute the major-
ity of its diet [20]. Size at birth is approximately 500 mm
total length (TL); males mature at approximately 800 mm
TL and females 900 mm TL; maximum size is approxi-
mately 1,350 mm TL [20,25]. Females give birth every year
with one to seven pups per litter (mean = 3.7) [20].
Commercial inshore gillnet fisheries data indicates neo-
nate C. fitzroyensis are found in intertidal zones moving
into deeper waters as they grow [26]. However, little else
is known about the movement and habitat use patterns
of this species.
The purpose of this study was to define the movement

and habitat use patterns of C. fitzroyensis in a nearshore
area, compare movement strategies to sharks of other
size categories, and evaluate its vulnerability to environ-
mental change (that is, habitat decline or destruction).
Passive acoustic telemetry was used to determine C.
fitzroyensis residency, space use, habitat selection, and
specialisation. Results of this study will lead to a better
understanding of how C. fitzroyensis use nearshore hab-
itats relative to other species and size classes.

Results
Sixteen C. fitzroyensis (3 male, 13 female) were caught
and released with acoustic transmitters on the eastern
side of Cleveland Bay between February and September
2012. Size ranged from 679 to 1,370 mm STL (mean ±
SE = 943 ± 48.9). Five C. fitzroyensis were not detected or
died following release and were excluded from analysis,
as was one immature female that was recaptured and
collected by a local commercial fisherman 36 km north
of the original release location approximately 2 weeks
after release. The remaining 10 C. fitzroyensis (1 male, 9
female) were monitored in Cleveland Bay from September
2012 to May 2014. Size, clasper length, and calcification
indicated the male was immature, while seven females
were mature and two were immature.

Residency
Presence in Cleveland Bay ranged by individual from 1
to 452 days (mean ± SE = 205 ± 53) (Figure 1). Three in-
dividuals left the array within 2 weeks of release and did
not return within the monitoring period. The residency
index of the sample population ranged from 0.002 to
0.74 (mean ± SE = 0.34 ± 0.09). There was no significant
relationship between residency and size (ANCOVA,
F(1,18) = 0.1616, P > 0.05) or sample year (ANCOVA,
F(1,18) = 0.1379, P > 0.05). There was also no clear sea-
sonal pattern in presence except for one mature female
that was consistently present from September to De-
cember in 2012 and 2013, was briefly present in April
2013 and 2014, and was never detected between May
and August during any year of the study.
Four mature female C. fitzroyensis were detected on

receivers in Bowling Green Bay. These individuals were
some of the most highly resident to Cleveland Bay. Two
were only detected in Bowling Green Bay for single days
before returning to Cleveland Bay. However, the two
other females made brief excursions lasting approxi-
mately 1 week into Bowling Green Bay throughout the
monitoring period.

Space use
With the exception of one individual, all resident indi-
viduals exclusively used the eastern side of Cleveland
Bay. One mature female used both the east and west
sides of the bay on a monthly basis, although this indi-
vidual still spent the majority of time on the eastern side
of the bay. Individual monthly activity space ranged from
2.6 to 19.8 km2 (mean ± SE =10.6 km2 ± 0.3) for 50%
KUDs and 9.1 to 81.9 km2 (mean ± SE = 47.9 km2 ± 1.0)
for 95% KUDs.
The model that best explained the distributions of

both 50% and 95% KUD sizes included month and diel
period as factors (Table 1). Shark length appeared to
have little or no effect on KUD size, and the model that
only included size as a factor was worse than the null
for both 50% and 95% KUDs. KUD size was larger dur-
ing the day than at night for both 50% and 95% KUDs
(Figure 2). The influence of month on KUD size was



Figure 1 Daily presence of Carcharhinus fitzroyensis released with acoustic transmitters in Cleveland Bay in 2012–2014. Individuals are identified
by maturity (mature = MAT, immature = IMMAT) and sex (male = M, female = F). Detections in Cleveland Bay are indicated by black circles.
Additional detections in Bowling Green Bay are indicated by white triangles.
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most prominent in May and August (Figure 3). In May,
there was a distinct increase in 50% and 95% KUD sizes
compared to all other months of the year. In contrast,
August 50% and 95% KUD sizes were considerably smaller
than those of all other months. KUD locations also fluctu-
ated on a monthly basis according to this pattern. In
August, activity space was centralised adjacent to the
southeastern creek mouths in Cleveland Bay (Figure 4).
During the rest of the year, but most notably in May,
Table 1 Effect of animal size, month, and diel period on Carch

Model df 50% KUD AICc 95% KUD AICc 50% K

KUD ~ 1 3 1,127.2 1,624.2 81.79

KUD ~ Size 4 1,136.0 1,631.4 90.62

KUD ~ Size + Diel 5 1,131.0 1,624.2 85.60

KUD ~ Size + Month 15 1,064.3* 1,539.3* 18.91

KUD ~Month 14 1,054.3* 1,532.1* 8.87

KUD ~Month + Diel 15 1,045.4* 1,521.4* 0.00

KUD ~ Diel 4 1,122.2* 1,617.2* 76.79

KUD ~ Size + Month + Diel 16 1,055.4* 1,528.6* 10.02

Effect of animal size, month, and diel period on creek whaler Carcharhinus fitzroyen
freedom (df), Akaike’s information criterion correction (AICc), difference in AICc (ΔAI
are marked with an * if models were significantly different from the null model usin
KUD positions were more widely spread throughout the
eastern half of the bay. The monthly pattern in KUD loca-
tion was observed in immature and mature individuals.

Habitat selection and specialisation
Individuals were detected in all five habitat types; how-
ever, the majority of time was spent in seagrass habitats
(Table 2). As there was no significant difference in time
spent in each habitat between immature and mature
arhinus fitzroyensis kernel utilisation distribution

UD ΔAICc 95% KUD ΔAICc 50% KUD weight 95% KUD weight

102.98 0.00 0.00

109.97 0.00 0.00

102.77 0.00 0.00

17.93 0.00 0.00

10.72 0.012 0.05

0.00 0.982 0.969

95.82 0.00 0.00

7.19 0.007 0.027

sis 50% and 95% kernel utilisation distribution (KUD) size (km2). Degree of
Cc), and Akaike weight (weight) values are given for each model. AICc values
g a likelihood ratio test. The best fit models are italicised.



Figure 2 Effect of diel period on 50% (a) and 95% (b) kernel utilisation sizes (km2) of Carcharhinus fitzroyensis. Blue bars are the mean predicted
value, and grey bands are the 95% confidence intervals.
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individuals (chi-squared test, X2
16 = 20.00, P > 0.05), all

individuals were grouped for habitat selection and special-
isation analysis. Mean individual Strauss selection values
for the entire monitoring period indicated C. fitzroyensis
selected seagrass habitat, used outer bay mud substrate
opportunistically, and avoided reef, mudflat, and sandy
inshore habitats (Figure 5). A chi-squared goodness-of-
fit test indicated selection was significant (X2

4 = 144.758,
P < 0.05). Mean fortnightly Strauss index values showed
that selection of seagrass was consistently positive through-
out the monitoring period (Figure 6). Selection of outer
bay habitat was highly variable and fluctuated between high
values of positive and negative selection. There was no
apparent seasonal pattern in the selection of outer bay
mud substrate; however, individuals selected outer bay
habitat less often in the second year of the study. Mud-
flat, reef, and sandy inshore habitats were consistently
avoided over time.
Mean individual niche breadth for C. fitzroyensis was

moderate and ranged from 0.70 to 0.77 (mean ± SE =
0.73 ± 0.03). Mean individual niche overlap was large
and ranged from 0.91 to 1 (mean ± SE = 0.97 ± 0.03), in-
dicating resident C. fitzroyensis used nearly identical pro-
portions of the same habitats.
Discussion
The residency, space use, and habitat use patterns exhib-
ited by C. fitzroyensis suggest that this species has a mod-
erately high degree of habitat specialisation in nearshore
environments. High individual niche overlap and consist-
ent habitat selection patterns exhibited by the population
show that there was limited individual variability in habitat
use. All resident individuals, regardless of age class, almost
exclusively used seagrass habitats and to a lesser extent
outer bay mud substrate habitats. Although the small
sample size of immature individuals has limited our ability
to compare the habitat and space use of age classes, the
shared use of nearshore areas by mature and immature
C. fitzroyensis is consistent with other small- and
medium-bodied coastal species, such as R. acutus [24],
R. terraenovae [18], R. taylori [19], C. sorrah [21], and
the grey-smooth hound shark Mustelus californicus [27,28].
However, in contrast to C. fitzroyensis, many small-
bodied coastal species use a wide array of habitats. For
example, R. taylori, R. terraenovae, and M. californicus
all exhibited low residency to single nearshore areas
[18,19,27]. R. taylori and R. terraenovae also used a variety
of habitats in nearshore embayments [18,19]. Although C.
sorrah displayed high residency and site fidelity to single



Figure 3 Effect of month on 50% (a) and 95% (b) kernel utilisation sizes (km2) of Carcharhinus fitzroyensis. Blue bars are the mean predicted
value, and grey bands are the 95% confidence intervals.
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nearshore habitats, individuals also demonstrated a high
degree of spatial segregation and individual variability in
habitat use [22,29]. Unlike C. fitzroyensis, C. sorrah dem-
onstrated no habitat preference at the population level. In-
stead, the residency and habitat use patterns exhibited by
C. fitzroyensis are more similar to those exhibited by juve-
niles of large-bodied species. Juveniles of large-bodied spe-
cies, such as the pigeye shark Carcharhinus amboinensis,
the bull shark Carcharhinus leucas, and the lemon shark
Negaprion brevirostris, are highly resident to nearshore
areas and often use the same habitats and home ranges
for long periods of time [15,30,31]. Therefore, the results
of this study demonstrate that C. fitzroyensis used a com-
bination of movement strategies previously reported in
small- and large-bodied species.
It has been suggested that small-bodied coastal species

adopt more mobile, less specialised space use strategies
because it allows them to take advantage of a wider array
of habitats [19]. However, long-term use of seagrass sug-
gests that this habitat had sufficient resources to support
the majority of the medium-bodied C. fitzroyensis popu-
lation over long periods of time. Consistent use of nur-
sery areas by large-bodied sharks is in part motivated by
high nearshore productivity and prey availability [32] but
see [33,34] for exceptions. Seagrass habitats are usually
highly productive and contain relatively large popula-
tions of small fish and bottom-dwelling prey [35-37].
Therefore, seagrass habitat may be excellent foraging
grounds for C. fitzroyensis. Moreover, consistent use of
seagrass habitat on the eastern side of Cleveland Bay
could result in greater familiarity with the distribution of
resources in that area and thus greater prey capture
success [38,39]. Therefore, increased resource availability
and better knowledge of resource distribution could
make it highly beneficial for C. fitzroyensis to remain in
the eastern side of the bay over long periods of time. The
affinity for seagrass and the eastern side of Cleveland Bay
may have also been due to the large rivers and creeks that
drain into this area. Carcharhinus fitzroyensis are known
to use rivers and freshwater areas ([40], Adkins, unpub-
lished data), and catch and acoustic data suggest that
young of the year C. fitzroyensis occupy areas close to
shore and near river mouths ([26], Munroe, unpublished
data). However, the extent to which C. fitzroyensis use
freshwater habitats and why is unclear, and more work is
needed to determine how the presence of freshwater out-
lets influences habitat selection. It should be noted that
some of the highly resident C. fitzroyensis made occasional



Figure 4 Monthly activity spaces of one immature (a) and two mature (b, c) Carcharhinus fitzroyensis in Cleveland Bay in May 2013, August 2013,
and December 2013. Each panel shows the 95% (blue fill) and 50% (yellow fill) kernel utilisation distributions.
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excursions into Bowling Green Bay and the habitats used
during those excursions could not be precisely deter-
mined. However, Bowling Green Bay is dominated by
mud substrate and seagrass habitats [41,42]. Therefore,
when individuals were in Bowling Green Bay, it is likely
that they were utilising habitats similar to those used in
Cleveland Bay.
It is possible that the close association with seagrass

habitat and the eastern half of the bay demonstrated by C.
fitzroyensis was due to bias in catch distribution. Given that
all C. fitzroyensis individuals were caught on the eastern
half of the bay, the high residency to that area may have
been the by-product of where individuals were captured.
Table 2 Time spent in each habitat by mature and
immature Carcharhinus fitzroyensis in Cleveland Bay

Habitat type Time spent (%) ±
SE (mature)

Time spent (%) ±
SE (immature)

Seagrass 72.9 ± 3.5 72.7 ± 6.26

Outer bay mud substrate 20.4 ± 4.4 20.0 ± 2.7

Reef 0.09 ± 0.1 0.0 ± 0.0

Sandy inshore 1.6 ± 1.2 0.19 ± 0.19

Intertidal mudflat 5.0 ± 2.5 7.11 ± 3.69

Mean and standard deviation of time spent in each habitat by mature and
immature Carcharhinus fitzroyensis in Cleveland Bay, measured as a percent
with standard error (SE).
However, fishery-independent and fishery-dependent sam-
pling throughout Cleveland Bay demonstrated that C. fitz-
royensis was almost exclusively captured on the eastern
side of the bay (Simpfendorfer, unpublished data) and was
never captured in reef habitat [43]. Therefore, habitat use
and activity space data are likely representative of how this
species uses space within Cleveland Bay and are not the
result of sampling bias. Fishery-independent catch data
from northern Australia also showed that this species is
often caught in mud substrate habitats and/or in areas
with high potential for benthic growth ([41], Simpfendor-
fer, unpublished data). Therefore, results from coastal
catch data support the conclusion that seagrass is one of
the primary habitats used by C. fitzroyensis.
While seagrass habitat was the principal habitat used

by C. fitzroyensis, moderate habitat specialisation values
and selection analysis indicate seagrass habitat was used
in conjunction with outer bay mud substrate. Use of outer
bay mud substrate was highly variable over time, and lack
of seasonality in selection suggests that this habitat was
not used in response to seasonal abiotic changes in the
environment. Selection of outer bay habitat could repre-
sent occasional foraging excursions in this habitat. Al-
though outer bay habitats were available on both sides
of Cleveland Bay, C. fitzroyensis rarely used outer bay
habitats on the western side of the bay. This would



Figure 5 Mean Strauss linear habitat selection index values of potential seagrass (green), outer bay mud substrate (blue), reef (red), sandy inshore
(yellow), and mudflat (black) habitats by Carcharhinus fitzroyensis in Cleveland Bay between September 2012 and May 2014. Bars indicate the
standard error.
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suggest that, regardless of why outer bay habitat was
used, individuals preferred to remain in close proximity
to seagrass habitat. Consistent avoidance of sandy in-
shore, reef, and mudflat habitat suggests that these habi-
tats were not suitable for C. fitzroyensis. Avoidance of
mudflat habitat may be the result of ontogenetic segre-
gation within the species. As previously discussed, there
is some evidence to suggest that YOY C. fitzroyensis use
shallow mudflat habitats, potentially for protection from
predators [44]. However, more information is needed to
determine why C. fitzroyensis avoided these habitats.
Residency data demonstrated that there was individual

variability in presence. Several individuals spent less than
Figure 6 Mean fortnightly individual Strauss linear selection values of Carc
(yellow line), outer bay mud substrate (blue line), intertidal mudflat (black l
2 weeks in the bay, suggesting that broader movements
occur in a portion of the population. Further evidence of
broad movement came from an individual that was
recaptured 36 km from Cleveland Bay a few weeks after
its release. Individual variability in presence has been
reported in other elasmobranchs, such as the medium-
bodied C. sorrah [22] and the cownose ray Rhinoptera
bonasus [45]. It is possible that some C. fitzroyensis indi-
viduals may have used more transitory strategies to gain
greater access to a wider range of resources, such as prey
and potential mates [22].
The space use patterns exhibited by resident C. fitz-

royensis may have also been motivated by prey availability.
harhinus fitzroyensis in Cleveland Bay for seagrass (green line), sand
ine), and reef (red line).
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The short-term change in activity space and location ob-
served in August and May was concurrently observed in
blacktip sharks, Carcharhinus tilstoni and Carcharhinus
limbatus, in Cleveland Bay (Munroe et al., unpublished
data). The simultaneous movement of both populations to
the southeastern corner of the bay suggests that an exter-
nal biotic or environmental stimulus caused changes in
population distribution. As this population spent the ma-
jority of time in seagrass habitat, it was originally hypothe-
sised that changes in seagrass productivity may have been
responsible for changes in movement. However, there is
no data to indicate there was a sudden change in seagrass
distribution in August 2013 compared to previous months
[46], suggesting that potential changes in seagrass density
and distribution were not a significant influence on the
changes in C. fitzroyensis space use at that time. If C.
fitzroyensis were responding to changes in abiotic factors
(for example, temperature, salinity), changes in space use
would likely mimic the more gradual pattern of changes
in bay temperature and salinity. However, the changes in
movement patterns demonstrated by C. fitzroyensis were
highly punctuated. Therefore, it appears more likely that
the short-term change in space use by C. fitzroyensis may
have been a response to a short-lived biotic factor, such as
a change in prey location and abundance. Diel patterns
in space use may also be linked to foraging behaviour.
Larger daytime activity spaces suggest that C. fitzroyen-
sis were more active during the day and may be primar-
ily diurnal feeders. This contrasts with what has been
found in other elasmobranchs that typically utilise small
core areas during the day and move more widely at
night for feeding [47-49].

Conclusions
The results of this study have shown that C. fitzroyensis
exhibited habitat and movement strategies that are often
associated with both small- and large-bodied species.
While immature and mature age classes shared space
and habitats and some individuals exhibited low resi-
dency to the bay, portions of the population were highly
resident and specialised to seagrass habitat. While the
consistent use of a single habitat can be highly beneficial,
for example it can result in increased familiarity with
resource distribution, this strategy could also make C.
fitzroyensis more vulnerable to environmental change,
specifically to the deterioration of seagrass habitat. Sea-
grass habitat abundance and biodiversity is under threat
of decline from numerous human activities, including
dredging [50,51], excessive nutrient deposition [52,53],
chemical contamination such as herbicides [54], and the
effects of climate change [55-57]. As immature and
mature medium-bodied individuals share space and re-
sources, declines in seagrass availability would likely
affect all age classes within the population. Results of
this study also suggest that medium-bodied coastal spe-
cies may use nearshore habitats differently compared to
other size classes of sharks. Therefore, future research
should strive to increase understanding of medium-
bodied species and the ecological causes, costs, and ben-
efits of their behaviours.

Methods
Ethics statement
All research was conducted in accordance with James
Cook University (JCU) animal ethics permit A1566 and
Great Barrier Reef (G11/346181.1) and DEEDI (144482)
permits for animal collection. This research was approved
by the JCU ethics committee and relevant state authorities.
Animals were handled quickly to ensure a high chance of
survival following release. Sharks were kept in an on-board
water tank with flowing water during surgery. No add-
itional samples were taken during processing.

Study site
Individuals were monitored in Cleveland Bay, Queens-
land, Australia, a shallow embayment on the northeast
coast of Australia (Figure 7). Cleveland Bay covers an
area of approximately 225 km2 and is 27 km wide. The
majority of the bay has a depth of less than 10 m and a
maximum tidal range of 4.2 m. The majority bottom-
type is soft mud substrate and to a lesser extent sandy
substrate. The bay also contains seagrass patches (Cymo-
docea serrulata, Halophila spp., Halodule uninervis) and
coastal reefs. Mangroves line the southern shore of the
bay. The main river outlets are on the southeastern side
of the bay and are adjacent to intertidal mudflats and
seagrass habitat.
Sixty-three VR2W acoustic receivers (Vemco Ltd.,

Bedford, Canada) were installed inside Cleveland Bay to
monitor C. fitzroyensis movements. The receivers were
installed in the primary habitat types within the bay, spe-
cifically intertidal mudflats, outer bay mud substrate (>5
m depth), sandy inshore substrate, reefs, and seagrass.
Data were downloaded from the receivers every 3 months.
The Australian Institute of Marine Science (AIMS) de-
ployed nine additional receivers in Bowling Green Bay ad-
jacent to the south of Cleveland Bay. Most of these
receivers were installed between depths of 9.2 to 11.0 m
with mud substrate. Therefore, they were classified as
outer bay mud substrate receivers, but data from these re-
ceivers were not included in residency, space use, or habi-
tat use analysis.

Field methods
Sharks were captured using 200-m-long 11.45-cm-mesh
gillnets, bottom-set 400-m long-lines, and baited rod
and reel. Long-lines were made of 6-mm nylon mainline
that was anchored at both ends. Gangions were made of



Figure 7 Locations of acoustic receivers in intertidal mudflat (white circle), seagrass (black square), outer bay mud substrate (black circle), inshore
sand (white triangle), and reef habitat (black triangle) in Cleveland Bay, Queensland, Australia.
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1 m of 1.5-mm wire leader and 1 m of 4-mm nylon
cord. Fifty to 70 size 14/0 Mustad tuna circle hooks (O.
Mustad & Sons A.S., Gjövik, Norway) were used per
long-line and baited with butterfly bream (Nemipterus
sp.), squid (Loligo sp.), blue threadfin (Eleutheronema
tetradactylum), or mullet (Mugil cephalus). Gillnets
were set for 15 to 20 min, while long-lines were set for
45 to 60 min.
Individuals were fitted with V16 acoustic transmitters

(Vemco Ltd., Bedford, Canada). To ensure long-term re-
tention, the transmitters were implanted into the body
cavity. Absorbable sutures were used to close the inci-
sion. Individuals were tagged with an individually num-
bered Rototag (Daltons, Henley-on-Thames, England) in
the first dorsal fin, measured to the nearest millimetre
stretch total length (STL), sexed, and released. The trans-
mitters emitted a unique code at 69 kHz. Unique trans-
mitter codes allowed for the identification of individuals.
To prevent acoustic signals from overlapping, the trans-
mitters pulsed on a random repeat interval of 45 to 75 s.
Range testing analysis found that transmitters had a max-
imum detection range of 900 m based on 0.05 probability
of detection [58]. Range testing analysis was conducted in
each habitat type and found that the maximum detection
range was similar throughout the bay.
Detection data were reviewed for false detections. De-

tections were determined to be false if 1) there were less
than two detections per receiver per day, 2) detections
were recorded on different receivers separated by large
distances (for example, opposite sides of the bay) over
short periods of time, 3) an individual was consistently
and exclusively detected on a single receiver for long pe-
riods of time (that is, individual died), or 4) detections
were recorded after the scheduled end of the life of the
transmitter. All false detections were removed from data
sets prior to analysis.

Statistical methods
Residency
Presence was evaluated each day, with individuals deemed
present if they were detected 2 or more times in the array
in a given day. Residency was determined using a resi-
dency index that calculated the number of days an individ-
ual was present in the array as a proportion of the total
days monitored [59,60]. The index ranged from 1 to 0, in-
dicating high to low residency, respectively. An ANCOVA
was used to test for differences in residency between sam-
ple years with STL as a covariate. Individuals that were
present in the bay for less than 2 weeks were excluded
from space use and habitat analysis.

Space use
Individual positions were estimated using a mean pos-
ition algorithm to determine individual centre of activity
(COA) locations [61]. The COA represented a weighted
mean position for each 30-min interval an individual
was detected in the array. COA locations were used to
calculate individual monthly activity space as 50% and
95% kernel utilisation distributions (KUDs) using the ade-
habitatHR package in R version 3.0 [62]. To prevent over-
estimation of KUD size, KUD calculations incorporated
an impassable boundary that represented the Cleveland
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Bay coastline. KUD calculations used a smoothing param-
eter of 0.008. A linear mixed effects model was used to de-
termine if 50% and 95% KUD sizes were affected by
animal size, month, and/or diel period. To account for re-
peated measures in the data, individual was incorporated
as a random factor in the resultant models. Models were
computed using the nlme package in R [63]. Models were
compared using Akaike’s information criterion with a
small sample size bias correction (AICc) where models
with the lowest AICc were considered to be the most sig-
nificant drivers of KUD size. Akaike weights were also cal-
culated to facilitate model assessment [64].
Habitat selection
Cleveland Bay was divided into regions based on the dis-
tribution of five distinct habitat types: intertidal mudflats,
outer bay mud substrate (>5 m depth), sandy inshore
substrate, reefs, and seagrass. Receivers were assigned a
habitat type based on their location in the bay. Habitat
availability was determined by calculating the proportion
of total receivers in the array represented by each habitat.
Proportional habitat use by individuals was determined by
comparing the amount of time spent in a habitat to the
total amount of time spent in the array.
The proportion of time individuals spent in each habi-

tat was compared to habitat availability using [65] linear
selectivity index (Li) to determine if C. fitzroyensis were
selecting or avoiding habitats:

Li ¼ ri−pi ð1Þ

where ri was the proportion of habitat i used and pi was
the proportion of habitat i available in the study site. Li < 0
indicated negative selection or avoidance. Li > 0 indicated
positive selection. Li = 0 indicated the habitat was neither
positively nor negatively selected and was used opportun-
istically [65]. The mean of resident individual Li values
was calculated for each year and each 2-week time period
within each year to assess population habitat selection
over time. A chi-squared goodness-of-fit test was used
to determine if the proportion of time the resident
population spent in each habitat was significantly differ-
ent from habitat availability and hence if mean annual
selection was significant.
Habitat niche breadth
Niche breadth of resident individuals was measured
using Hutchinson’s niche definition which only included
the habitats a species used and in what proportions they
used those habitats [66,67]. Based on this definition, a
modified Freeman-Tukey statistic was used to calculate
population niche breadth [68]:
FT ¼
XR
i¼1

piqið Þ1=2 ð2Þ

where pi was the proportion of habitat i used, qi was the
proportion of habitat i available in the study site, and R
was the total number of habitats available. The output
ranged from 0, which indicated a narrow niche and a
highly specialised species, to 1, which indicated a large
niche. A variation of Equation 2 was used to calculate in-
dividual niche overlap [69]:

FT ¼
XR
i¼1

pik pjk
� �1=2

ð3Þ

where pik and pjk were the proportions of habitat R used
by individual i and j, respectively. The output similarly
ranged from 0 to 1. A value of 0 indicated no overlap in
habitat niche breadth between a given pair of individuals
and 1 indicated complete overlap in habitat niche breadth
between a given pair of individuals. Where applicable, all
data were checked for normality using normality and
homogeneity of variance diagnostics in R version 3.0 (R
Development Core Team: www.r-project.org) and data
were log10 transformed if necessary.
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