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The occurrence of sharks on coral reefs has been well documented for decades,
especially since the advent of SCUBA diving. Despite this, it is only within the last
decade that substantial research effort has been directed at these species. Research
effort has increased in conjunction with the realization that reef shark populations
have experienced significant declines throughout their distribution. However, trends in
declines have been coupled with reports of high abundance in some areas providing
confusion about what healthy reef shark populations should look like. Given that
coral reefs are among the most biologically diverse and productive habitats, but
also are one of the most threatened by climate change due to the effects of rising
temperature and declining pH, there is a need to understand reef sharks to better predict
consequences for their populations. Studies of reef sharks also have the potential
to provide insights into the functioning of their populations and ecosystems more
broadly because of the spatially constrained nature of their distributions, and high
water visibility in most locations. These aspects make studying reef shark populations
integral to understanding coral reef ecosystem dynamics and resilience to pressures.
This paper synthesizes a number of key questions about coral reef sharks based on
our experience researching this group of species over the past decade. Key research
gaps and critical questions include aspects of life history, population dynamics, ecology,
behavior, physiology, energetics, and more. This synthesis also considers the methods
used to date, and what new and emerging techniques may be available to improve
our understanding of reef shark populations. The synthesis will highlight how even
basic questions relating to reef shark population sizes, how large they should be, and
what impacts do they have on reef ecosystems, remain either unanswered or highly
controversial.
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INTRODUCTION

Coral reefs are among the most diverse, structurally complex, and
highly productive ecosystems on Earth (Spalding and Grenfell,
1997; Roberts et al., 2002), yet they are also among the most
threatened (Wilson et al., 2006; Hughes et al., 2018b). There is
growing evidence that intense human exploitation and impacts,
coral predation by crown-of-thorns starfish (COTS), and climate-
driven changes are severely impacting the health and functioning
of coral reefs (Gardner et al., 2003; Mora, 2008; De’ath et al.,
2012; Cinner et al., 2016; Hughes et al., 2018a), which may be
speeding up loss of biodiversity at a global-scale. Just as threats
have increased dramatically for coral reefs so they have for sharks,
with an estimated 25% of all elasmobranchs threatened with
extinction (Dulvy et al., 2014). On coral reefs there have been
numerous reports of declines in the abundance of sharks that
are attributed to overfishing (e.g., Robbins et al., 2006; Graham
et al., 2010; Ward-Paige et al., 2010; Nadon et al., 2012). Given the
potentially important roles that sharks play in marine ecosystems
(Heithaus and Dill, 2006; Wirsing et al., 2007; Rasher et al., 2017),
the loss of sharks from coral reefs could have significant ecological
and economic consequences for reef systems.

The long history of human disturbance of reef ecosystems
(e.g., fishing pressure, nutrient runoff) impacts our capacity
to fully define the pristine condition of reefs and understand
functional roles and relationships among reef-associated species
(Sandin et al., 2008; Ferretti et al., 2018). This is particularly
relevant for large predators (sharks and fish) that are often targets
of fishing (Heupel et al., 2009; Graham et al., 2010; Ward-Paige
et al., 2010; Spaet et al., 2016). Our understanding is further
complicated by the dynamic and complex nature of coral reef
communities and food webs (Ruppert et al., 2013; Roff et al., 2016;
Rasher et al., 2017). The role of sharks in coral reef ecosystems has
been the center of recent debates (Roff et al., 2016; Ruppert et al.,
2016; Casey et al., 2017; Ferreira et al., 2017). Despite current
work suggesting some species have direct and indirect (non-
consumptive) effects that shape coral reef communities (Ruppert
et al., 2013; Rasher et al., 2017), there is still disagreement about
whether reef shark declines may result in top-down trophic
cascades (Frisch et al., 2016; Casey et al., 2017). Therefore,
defining which species of sharks (or life-stages of a species) use
coral reef habitats, the proportion of time they spend on reefs,
and how the level of dependence changes between species and/or
across reef environments remains crucial to understanding their
role, and ultimately predicting the ecological consequences of
population declines.

Despite years of research, there are still significant knowledge
gaps regarding reef shark biology and ecology. Here we explore
some of these gaps, review the current knowledge and explore
ways to address ecologically important questions. With the level
of threat facing coral reef ecosystems and additional pressure
on shark populations, filling knowledge gaps for reef sharks is
critical to helping maintain healthy reef ecosystems. For the
purposes of this exercise, we focus on carcharhinid species based
on their prevalence in the literature and level of impact by human
activities such as fishing. We also focus on coral reefs and as
such this text does not relate to species that occur in rocky or

temperate reef systems. Exploration of the literature indicates the
majority of information is primarily from the Pacific region, with
fewer studies and more limited information available from other
regions (e.g., Shipley et al., 2017).

KEY RESEARCH TOPICS AND
QUESTIONS

Which Shark Species Use Coral Reefs,
and How Does the Level of Dependence
Vary Among Species?
Coral reef-associated sharks include a range of species that differ
in size, life-history, and degree of connection with coral reefs
(Ward-Paige et al., 2010; Chin et al., 2012; Espinoza et al.,
2014; Espinoza et al., 2015b; Shipley et al., 2018). Based on
their residency patterns and dispersal capabilities, reef-associated
sharks can be classified in two main groups: (1) reef-residents,
which are species commonly found at/near coral reefs year-
round (Chapman et al., 2005; Garla et al., 2006; Heupel and
Bennett, 2007; Papastamatiou et al., 2009b; Barnett et al., 2012;
Brooks et al., 2013; Heupel and Simpfendorfer, 2014); and (2)
non-residents, which include species that occur in coral reef
habitats opportunistically or seasonally, but are not reliant on
them (Holland et al., 1999; Meyer et al., 2009; Ward-Paige et al.,
2010; Papastamatiou et al., 2013; Lea et al., 2015; Espinoza et al.,
2016). Reef-residents can be further divided into reef-specialists
(i.e., small, cryptic sharks that spend most of their time at a
single reef and/or have limited movement between reef habitats)
and reef-generalists (i.e., species that tend to use medium to
large amounts of space due to higher energetic requirements).
Examples of reef-specialists include small, cryptic species such
as epaulette (Hemiscyllium ocellatum), wobbegong (Orectolobus
spp.) and brown banded carpetsharks (Chyloscyllium punctatum)
(Randall, 1977; Heupel and Bennett, 2007; Heupel et al., 2018).
Reef-generalist species are the most well known group of
coral reef species and include the larger, more mobile species
that live year-round on coral reefs such as the blacktip reef
(Carcharhinus melanopterus), whitetip reef (Triaenodon obesus),
gray reef (Carcharhinus amblyrhynchos), silvertip (Carcharhinus
albimarginatus) and Caribbean reef (Carcharhinus perezi) shark.
In contrast, non-resident sharks such as tiger (Galeocerdo
cuvier), lemon (Negaprion brevirostris), great hammerhead
(Sphyrna mokarran), bull (Carcharhinus leucas) and nurse sharks
(Ginglymostoma cirratum) use a wide range of available habitats
including coral reefs during their life. Non-resident species are
not always large species, including species such as the Australian
weasel shark (Hemigaleus australiensis) (Heupel et al., 2018) and
sliteye shark (Loxodon macrorhinus) (Espinoza et al., 2014).

The level of association with coral reefs varies within and
among species, and for some species changes are also evident
during ontogeny (Ketchum et al., 2014; Lea et al., 2015; Espinoza
et al., 2016). Although some non-resident sharks might occur in
naturally low abundances or use coral reefs for shorter periods
than resident species, they likely play an important role in
regulating reef communities, including by acting as transient
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apex predators and creating fear landscapes (Fitzpatrick et al.,
2012; Mourier et al., 2013; Heupel et al., 2014). Focused research
is required to further our understanding of the dependency of
non-resident species on reef habitats, quantifying interactions
between resident and non-resident species, and ultimately
defining their roles in coral reef ecosystems. There are a variety
of approaches that can address reef dependency, but studies of
movement (e.g., activity space, dispersal distance, residency) will
be primary sources of information for answering this question.
An understanding of where individuals are feeding (e.g., on reef
resources or pelagic resources via stomach content, stable isotope
or fatty acid analyses) will also help define dependence on reef
ecosystems. These approaches and many more can be applied
to better define how species are using coral reef habitats, what
their biological requirements are and thus define their overall
dependence on reefs as a resource.

What Are the Life History Parameters of
Reef Sharks?
Despite being well represented in the scientific literature,
information on the life history of reef-resident sharks is relatively
sparse. Sizes at birth, maturity and maximum size are mostly
known, as are basic reproductive parameters such as litter size
(e.g., Stevens and McLoughlin, 1991; Last and Stevens, 2009;
Papastamatiou et al., 2009a; Chin et al., 2013b); but there are
large gaps in age and growth parameters. It is only in recent
years that these data have appeared in the scientific literature,
although some have existed in the gray literature for longer (e.g.,
Heupel, 1998; Robbins, 2006). Age and growth coefficients and
L∞ (asymptotic length for a population) have been estimated
for a number of carcharhinid species in the Pacific (e.g., Chin
et al., 2013b; Smart et al., 2016, 2017; Bradley et al., 2017a), but
far less is known from the Atlantic, which has been restricted to
studies on lemon sharks (e.g., Brown and Gruber, 1988; Jennings
et al., 2008). Data are even more limited for other reef-associated
species in all regions. There is evidence of significant differences
in size and life history across the broad geographic ranges of
reef-resident species (e.g., Bradley et al., 2017a) which may have
important management implications and needs to be further
investigated. In particular, life-history studies in the Indian,
Eastern Pacific and Caribbean regions should be a priority. Future
studies need to explore age and growth parameters required
to define population viability modeling and should include,
primarily, species that are harvested in commercial, recreational,
and artisanal fisheries.

The use of life history data to inform population models
has also been limited, and restricted to the Indo-West Pacific
region. Robbins et al. (2006), Hisano et al. (2011), and Smart
et al. (2018) have all developed demographic models of reef-
resident shark species, mostly gray reef sharks, which might
improve their management. However, the estimates of natural
and fishing mortality used in these models have been problematic,
highlighting the need to further refine mortality estimates of reef
shark species. It is likely that habitat specialization and limited
movements mean that mortality processes work differently
within these populations compared to more widely moving

species that have differing exposure to sources of mortality. Smart
et al. (2018) overcame this issue by using a reverse inverse
matrix approach to estimating mortality of gray reef sharks.
However, direct measurement of mortality using telemetry
techniques (e.g., Heupel and Simpfendorfer, 2002) can provide
an improved understanding of the population dynamics of reef-
resident sharks. Another research area that will lead to increased
understanding of the dynamics of populations is the development
of metapopulation reef models. Movement data show that reef-
resident sharks are mostly associated with individual reefs, but
a small fraction occasionally move between reefs (e.g., Espinoza
et al., 2015a). Development of metapopulation models will enable
predictions of the effects of harvest at local scales on overall
populations, and so promote improved conservation efforts.

What Are the Trophic Levels and
Functional Roles of Reef Sharks?
In both terrestrial and aquatic ecosystems, high trophic level
predators are capable of regulating prey dynamics, structuring
food webs, and can ultimately help maintain ecosystem function
and health (Sergio et al., 2008; Terborgh and Estes, 2010;
Heithaus et al., 2014). Consequently, the removal or decline
of apex predators from the environment may propagate down
the food web (i.e., top-down processes), potentially leading to
consequences that impact ecosystem processes (Dulvy et al., 2000;
Terborgh and Estes, 2010; Heithaus et al., 2014). Defining the
roles of species within marine ecosystems is complicated due
to the inability to witness interactions amongst species. In an
attempt to clarify the roles of reef sharks, Heupel et al. (2014)
classified sharks into categories based on body size and trophic
level. This classification resulted in most carcharhinid shark
species (e.g., gray reef, blacktip reef, whitetip reef, Caribbean reef)
being classified as mesopredators. Recent studies have supported
this classification and shown that carcharhinid reef sharks occupy
similar trophic levels and isotopic niche space to large-bodied
teleost predators (Frisch et al., 2016; Casey et al., 2017; Bond et al.,
2018). This seemingly high level of trophic redundancy could
explain the limited evidence for shark-induced trophic cascades
in most coral reef studies (Frisch et al., 2016; Casey et al., 2017), as
these species are likely acting as mesopredators rather than apex
predators (Heupel et al., 2014; Roff et al., 2016; Bond et al., 2018).
Therefore, understanding and defining the role that the wider
range of shark species play in coral reef ecosystems and the level
of interaction between resident and non-resident species remains
a crucial topic given current declines of top predators. This is a
challenging topic to address, but as trophic information on a wide
range of sharks and other reef-predators becomes available, our
ability to predict broad-scale changes at the ecosystem level will
improve.

Knowledge of the movement and trophic ecology of co-
occurring reef predators can further our understanding of the
level of interaction between resident and non-resident species.
For example, large wide-ranging predators such as bull sharks
in the GBR typically spend less than 20% of their time on reefs
near their tagging site, and up to 51% of the tagged population
undertook long-range migrations to other reefs and/or coastal
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areas (Espinoza et al., 2016). Interestingly, Espinoza et al. (2016)
demonstrated that a portion of the population was detected year-
round, and all migrating individuals (except one) returned to
their tagging reefs, which means that at least some individuals
may have stronger interactions with resident reef predators.
Recent feeding data suggest bull sharks consume similar prey
resources as small resident predators, at least during short
periods, and consequently may play an important role in reef food
webs through direct predation, competition, and/or through fear
effects. These findings highlight the importance of understanding
linkages between spatial and trophic ecology of reef-associated
predators over different temporal scales. Moreover, reef sharks
can produce non-consumptive (fear) effects on herbivores, and
thus may influence macroalgae distribution and abundance
on coral reefs (Rasher et al., 2017). Therefore, despite the
ongoing debate over the role that sharks play on coral reefs,
research should investigate under what specific conditions
shark declines can result in trophic cascades (e.g., direct
and indirect links across habitats with different levels of reef
degradation).

Given the diverse prey pool and dietary links in reef
ecosystems, determining how resource pools are selected and
partitioned among predators can provide important information
on the extent and characteristics of potential top-down effects.
The diet and trophic ecology of aquatic animals have traditionally
been studied using stomach content analysis (Hyslop, 1980;
Cortés, 1997). However, dietary information based on stomach
contents depends on examining a large number of samples
from all size classes, and across different spatial and temporal
scales (Hussey et al., 2011). Stable isotopes (δ13C and δ15N)
provide a cost-effective, non-lethal and often more powerful
tool in ecological studies than stomach content analysis.
Stable isotopes of carbon (13C/12C expressed relative to a
standard as δ13C) vary substantially among primary producers
with different photosynthetic pathways, but change little with
trophic transfer (0–1h; Peterson and Fry, 1987), whereas
stable isotopes of nitrogen (15N/14N expressed relative to a
standard as δ15N) generally increase by 3–4h with trophic
position (TP) (Post, 2002). Consequently, δ13C is often used
to track shark movements between isotopically distinct habitats
(Papastamatiou et al., 2010; Hussey et al., 2011; McCauley et al.,
2012), while δ15N is used to define the trophic position of
sharks in a specific food web (Hilting et al., 2013; Ferreira
et al., 2017), examine dietary shifts and measure isotopic
niche breath (Hussey et al., 2011; Heithaus et al., 2014).
Given that coral reefs have multiple sources of carbon (both
benthic and pelagic), application of Bayesian mixing-model
techniques can assist in defining which habitats sharks are
getting the majority of their carbon from (e.g., lagoon vs.
pelagic, McCauley et al., 2012; Bierwagen et al., 2018). The
application of multi-tissue stable isotopes can also enhance
our understanding of the trophic ecology of a species over
multiple temporal scales based on the isotopic turnover rate
of the sampled tissue (Post, 2002; Matich and Heithaus, 2014),
which can reveal temporal habitat and dietary shifts from unique
isotopic signatures of assimilated prey (MacNeil et al., 2005;
Matich and Heithaus, 2014).

Other chemical makers such as compound specific stable
isotopes (on both essential and non-essential amino acids) and
fatty acids can also increase the specificity of dietary studies
while providing more information about trophic interactions
at the top of coral reef food webs (McMahon et al., 2010;
Couturier et al., 2013; Papastamatiou et al., 2015; Bierwagen
et al., 2018). Compound specific stable isotope analysis provides
a direct estimate of trophic position without concerns regarding
the isotopic signature of baseline carbon, and allows direct
comparison between species (e.g., sharks vs. teleosts) to more
accurately assess food web structure (e.g., Papastamatiou et al.,
2015). Unfortunately, the use of some of these markers is still
expensive and challenging due to the high level of functional
redundancy in reef ecosystems, limited knowledge of diet-
tissue discrimination factors, and complications in retention of
nitrogen in certain organisms (Post, 2002; Olin et al., 2013).
Further studies investigating variation diet-tissue discrimination
factors between species under control or semi-control conditions
are needed to improve our understanding of coral reef food web
dynamics. As these techniques evolve they could help refine the
role of sharks in reef systems.

Why Do Some Coral Reefs Support Very
High Reef Shark Abundances?
There are a number of reports of remote coral reefs in the Pacific
supporting very high abundances of reef-resident carcharhinid
sharks (e.g., Sandin et al., 2008; Mourier et al., 2016). It has been
suggested that these abundances are evidence of inverted trophic
pyramids on pristine coral reefs (McCauley et al., 2018), but more
detailed study of these areas by Mourier et al. (2016) has shown
that high abundances are supported by both spatial and temporal
subsidies, and as such do not represent true inverted pyramids
(Simpfendorfer and Heupel, 2016). Further, tag-recapture and
tow-board survey data from Palmyra Atoll, where the first data
were collected suggesting inverted pyramids, showed an order of
magnitude lower density of sharks than shown by diver visual
surveys (Nadon et al., 2012; Bradley et al., 2017b). This result
suggests densities may not be as high as originally thought. The
broader question remains, however, as to whether these isolated
high abundances of reef-resident sharks were historically the
norm for coral reefs, or if they represent special cases where
they are able to exploit spatial and temporal trophic subsidies
(McCauley et al., 2018). To answer this Nadon et al. (2012)
demonstrated that the estimated baselines of sharks at a number
of Pacific Ocean reefs were highly variable, largely because of
differences in ocean productivity around the reefs. Differences
in baseline abundance were estimated to be close to an order
of magnitude, suggesting that very high abundances are not the
norm. Additional research is needed applying multiple methods
(e.g., a variety of census methods in conjunction with studies of
residency at a reef) to define how these high abundance locations,
particularly those where human impacts are low, compare and
relate to other regions with lower numbers of reef sharks.
Along with an improved understanding of residency patterns,
Ecopath/Ecosim models can be used to estimate the carrying
capacity of reef shark populations to compare to empirical data

Frontiers in Marine Science | www.frontiersin.org 4 January 2019 | Volume 6 | Article 12

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-06-00012 January 29, 2019 Time: 17:19 # 5

Heupel et al. Reef Shark Science

on population sizes. Defining a healthy number of reef sharks
or optimal reef shark population requires understanding the
carrying capacity of a reef which can only be derived from
understanding the prey composition at a location, coupled with
an understanding of food web dynamics, resource requirements
of predators (e.g., feeding periodicity) amongst other parameters
(Ferretti et al., 2018). As such, a full understanding of this
question requires a number of carefully collected data sets.
Future studies should consider a collaborative, multidisciplinary
approach to this complex question.

While pristine atolls with large shark numbers are considered
‘healthy,’ habitat quality from the shark’s standpoint may be
substantially different. There is some evidence that sharks in
pristine systems have slower growth rates than those at islands
exposed to human impacts (Stevens, 1984; Papastamatiou et al.,
2009b; Bradley et al., 2017a). Due to large population sizes and
intra-specific competition, sharks in pristine systems may be
food-limited leading to reduced growth (Stevens, 1984). Future
research should collate life history characteristics from pristine
vs. impacted systems to tease out the validity of this idea as
it has implications for our ecological view of pristine healthy
ecosystems.

How Connected Are Shark Populations
Between Reefs?
A number of studies have examined the connectivity patterns
of reef sharks to determine the extent of their movement
between individual coral reefs. Two main methods have been
applied to studying connectivity: telemetry and genetics. Each
method provides evidence of connectivity over varying timescales
with telemetry more suited to demographic estimates and
genetics providing evidence of connectivity over evolutionary
time scales. While migration rates between populations might
be low enough to demonstrate demographic independence, the
detection of genetic population differences (in the form of
allele frequencies) may not be possible for many generations
(Lowe and Allendorf, 2010). Therefore, populations could be
genetically similar, but demographically separate and genetic
techniques might underestimate subtle population structure for
reef sharks. Reproduction between individuals from neighboring
reefs can skew localized genetic signatures (Momigliano et al.,
2017; Bailleul et al., 2018) and might cause the identification of
broad-scale genetic connectivity for species who display signals
of demographic residency. Combining telemetry and genetic
approaches can overcome some of these issues and provide
holistic evidence for spatial management planning.

Although most telemetry research addresses particular
locations or questions, some understanding of broader
movement and connectivity has been gained. Studies of
common carcharhinid reef species (i.e., gray reef, blacktip reef,
whitetip reef, and Caribbean reef) typically indicate high levels
of site fidelity to a single location or reef (Chapman et al.,
2005; Garla et al., 2006; Papastamatiou et al., 2010; Heupel and
Simpfendorfer, 2014; Papastamatiou et al., 2018). Many of these
studies focus on large and/or isolated reefs which might provide
limited capacity for connectivity with other reef habitats. Despite

this, acoustic telemetry studies have revealed Caribbean reef
shark movements of over 50 km (Chapman et al., 2005), 68 and
81 km for blacktip reef sharks (Chin et al., 2013a), and a 134 km
movement by a gray reef shark (Heupel et al., 2010). While these
distances are small compared to those traveled by non-resident
reef species (e.g., Fitzpatrick et al., 2012; Heupel et al., 2015) they
indicate that broad scale movements are possible and do occur
to some extent in reef shark populations. In a study designed to
examine connectivity among small, mid-shelf reefs in the Great
Barrier Reef, Espinoza et al. (2015b) examined movements of
three species with different levels of reef association. Results
indicated all three species moved between reefs, although the
amount of movement and connectivity varied among species,
sexes and life-stages. Gray reef sharks, for example, showed
highest residency to a single reef, but individuals, particularly
larger males visited up to five reefs. Silvertip sharks were less
resident at a single reef, moved larger distances and visited up
to seven reefs. Bull sharks were most mobile with limited time
spent at individual reefs, extensive movement and visitation at 13
of the 17 monitored reefs. Although movements varied among
species, it was apparent that movement among closely spaced
reefs may be common and an important factor in dispersal and
reproduction. Shipley et al. (2018) also found differences in
male and female movement patterns of Caribbean reef sharks
suggesting males had larger home ranges. This pattern may be
similar to the male-biased dispersal seen in other reef sharks.
Given the capacity for reef sharks to move extended distances
(Chapman et al., 2005; Heupel et al., 2010; Barnett et al., 2012),
there is a subsequent need for broad-scale telemetry networks
if using acoustic telemetry technology. Alternatively, satellite
tagging could be useful to fully define the extent of movement of
these species and better characterize connectivity. For example,
satellite tagged gray reef sharks remained close to Palmyra Atoll,
except for two individuals (males) who swam up to 926 km
into open ocean (White et al., 2017). Such extreme movements,
while unusual for reef resident species, are required for the
colonization of remote reefs in the open ocean which may be
separated by 1000s of kilometers.

Genetic analyses can also reveal population structure and
elements of connectivity, although on evolutionary rather than
contemporary time scales. For example, genetic studies of
whitetip reef sharks, which are known to be highly site attached
to a single reef (Barnett et al., 2012; Whitney et al., 2012b), have
revealed population structuring along semi-contiguous habitats
and connectivity indicative of oceanic dispersal (Whitney et al.,
2012b). Apex species including tiger and scalloped hammerhead
sharks also show ocean basin connectivity, likely facilitated by
male dispersal (Daly-Engel et al., 2012; Holmes et al., 2017).
Conversely, limited oceanic connectivity is described, with gray
reef, blacktip reef, lemon and Galapagos (C. galapagensis) sharks
all revealing population structure between ocean basins (Schultz
et al., 2008; Vignaud et al., 2014; Momigliano et al., 2017; Pazmiño
et al., 2018). Examination of the structure of Caribbean reef
shark populations revealed low genetic diversity and evidence
for historical population fluctuations. The authors suggested
this may be evidence of a population collapse and subsequent
expansion (Bernard et al., 2017). While large expanses of ocean
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exist as barriers for these species, genetic connectivity is often
identified across interconnected reef systems and continental
shelves. For example, strong gene flow has been described for
gray reef sharks across∼1200 km of the GBR (Momigliano et al.,
2015, 2017). Genetic analysis of blacktip reef sharks also revealed
population structuring (Vignaud et al., 2014) and high incidences
of female philopatry to nursery areas as far as 50 km from
the typical home range of the individual (Mourier and Planes,
2013). Similar to telemetry data, different species reveal slightly
different patterns, but application of genetic tools provides an
opportunity to explore the amount of connectivity within and
among reef shark populations to better inform management and
conservation efforts at the reef and region level. Broader and
more integrated research (e.g., combined telemetry and genetics)
may provide a more comprehensive understanding of population
connectivity.

How Do Human Pressures Affect Reef
Shark Populations?
Anthropogenic influences on reef shark populations include both
indirect and direct effects. Indirect human effects come in the
form of habitat destruction such as from pollution, removal
of mangrove habitats, destructive fishing practices, etc. Indirect
effects also occur via removal of prey species from the ecosystem
which may have implications for shark survival. Fishing is the
major direct human effect on reef shark populations (Graham
et al., 2010; Ward-Paige et al., 2010; Spaet et al., 2016; Ferretti
et al., 2018). Although estimates of the amount of decline vary,
multiple studies indicate fishing has had significant impacts on
the status of reef shark populations (Friedlander and DeMartini,
2002; Robbins et al., 2006; Sandin et al., 2008; Heupel et al., 2009;
Ward-Paige et al., 2010; Nadon et al., 2012; Espinoza et al., 2014).
However, most studies examining fishing effects on reef sharks
occur at small geographic scales limiting our understanding of
patterns at more regional or global-scales (MacNeil et al., 2015;
Cinner et al., 2016).

Differences in movement behaviors and degree of association
with coral reefs have important implications for human effects
on populations and the management and conservation of
sharks (Speed et al., 2011; Espinoza et al., 2015b; White
et al., 2017). Reef-scale protection (e.g., marine protected area)
creates the capacity to protect resident species (Heupel et al.,
2014; Espinoza et al., 2015b). However, most wide-ranging
predators are not resident at a single reef and as such are
exposed to varying degrees of fishing pressure outside no-take
reefs, thus reducing population sizes and limiting connectivity,
which can have flow on effects to the community. Given that
shark dispersal is influenced by the degree of reef-isolation
(Espinoza et al., 2015b), more work is needed to understand
how the level of protection varies among species and across
reefs that differ in isolation. While some data are available to
explore questions around the effects of fishing at reef scales,
broader scale regional and global analyses are required to
fully understand the implications of human pressures on reef
shark populations (Cinner et al., 2018). These analyses should
consider indices of environmental productivity as well as capacity

for human influence (e.g., proximity of human populations,
amount of fishing pressure). Based on the highly mobile nature
of some apex predators associated with reef habitats (e.g.,
tiger, bull, great hammerhead sharks), consideration should
be given to fishing effects on these wide-ranging species
and potential flow on effects to coral reef communities and
species. Ultimately defining the effects of human pressures
on reef shark populations requires an understanding of the
extent of human activities and how they overlap with shark
populations. For example, how much fishing occurs, what
species are targeted and what gear type is used, are crucial to
understanding removal of sharks and their prey. Destruction
of reef habitat through direct human damage (e.g., dynamite
fishing, anchoring, and ship grounding) and indirect effects
of pollution or other factors also need to be quantified.
These factors then need to be explored on local and regional
scales to determine effects on resident and mobile species.
We also need to start quantifying illegal fishing pressure as
many island or atoll scale protected areas are difficult to
enforce or illegal fishing may be tolerated with a recent study
showing high levels of illegal fishing of gray reef sharks in
the Marshall Islands (Bradley et al., 2018). Only through
clearly understanding human effects can we develop suitable
solutions.

How Will Climate Change Affect Reef
Shark Populations?
Climate-driven changes are already impacting the health and
functioning of coral reefs (Hughes et al., 2018a). While
some sharks are highly mobile and potentially capable of
adapting to a changing climate, site-attached species that
depend on coral reefs and have slow life history strategies are
projected to be highly vulnerable to climate impacts (Chin
et al., 2010; Hazen et al., 2012; Waples and Audzijonyte,
2016). Moreover, recent studies have documented pole-ward
distribution shifts in a large number of marine fishes, some
of them wide-ranging species (Perry et al., 2005; Pörtner
and Peck, 2010; Hazen et al., 2012). Therefore, understanding
the physiological limitations, distribution, movement and
habitat use of reef-associated sharks, and incorporating long-
term environmental monitoring across large spatial scales
is crucial to detect climate-driven impacts on reef shark
populations.

Collectively, climate change has resulted in an overall
increase in SST and ocean acidification, which has important
implications to the productivity, structure, and function of
coral reefs. Specifically, climate-driven impacts are expected
to generate: (i) changes in the distribution and movement of
marine megafauna, (ii) changes in the timing and duration
of migration, (iii) changes in the distribution and quality
of food resources, and (iv) disruption of physiological and
metabolic process linked to food intake, behavior, digestion
rates, reproduction and growth (Pistevos et al., 2015; Johnson
et al., 2016). To date there is limited research in this field,
with most studies focused on small benthic reef species (e.g.,
Gervais et al., 2016; Heinrich et al., 2016), although those
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investigating larger carcharhinid species are starting to occur
(Bouyoucos et al., 2018). Future research should focus on
determining the impacts of warmer and more acidic oceans
on shark species with different life-histories (e.g., slow vs. fast-
growing), species living at the edges of coral reef distributions,
species with varying degrees of reef-association and dependency,
and the interaction between climate-driven impacts and food
webs. Given that future scenarios of climate change are not
optimistic, there is an urgent need for research as a basis for
decision making and action to conserve populations and habitats.
Particularly valuable, will be a mechanistic understanding
of physiological limitations relative to changes in factors
such as temperature and acidification. For example, there
is a need to understand how temperature influences species
distributions and how these will change with rising temperatures
(Payne et al., 2018). Such an approach requires producing
thermal activity curves for reef sharks to understand how
temperature regulates physiological processes such as metabolic
rates, aerobic scope and behavioral activity (Payne et al.,
2018).

CONSIDERATIONS IN HOW TO ANSWER
THESE QUESTIONS

How Can We Answer Hypothesis Driven
Questions When We Mostly Lack the
Ability for Manipulative Experiments?
There are inherent difficulties associated with studying
carcharhinid reef sharks, including animals that do not
reliably return to a specific location (e.g., a haul out beach),
rarely come to the surface, and are not eligible for the
majority of manipulation experiments (e.g., removal of a
species for competition experiments). These issues have
led to most reef shark studies being descriptive in nature
rather than hypothesis driven (Papastamatiou and Lowe,
2012). However, hypothesis driven studies are needed to
identify the ecological mechanisms that explain patterns of
distribution and community structure. One method is to
take a meta-analytical or ‘pseudo-experimental’ approach
where results from studies can be combined treating predator
removal (e.g., overexploitation), protection (e.g., marine
protected areas), and other factors as the equivalent of
experimental manipulation (Baum and Worm, 2009). As
such hypothesis testing can be performed especially those
related to predator-prey interactions or top-down control.
In other cases, experimental manipulations are possible. For
example, McCauley et al. (2010), set up exclusion cages on
a reef to see how the reef would respond if sharks and other
predators were excluded. By necessity, exclusion cages were
small making it difficult to extrapolate results to the reef-
scale, and it wasn’t possible to separate sharks from large
teleosts (e.g., snapper, jacks). Several studies have investigated
changes in prey behavior at islands with/without sharks
and how this may lead to trophic cascades (e.g., grazing
rates, Madin et al., 2010), but one study also manipulated

herbivore resources (algae) to directly investigate how grazing
responded to the presence/absence of sharks over a tidal cycle
(Rasher et al., 2017). An alternative or additional method is
to compare distribution patterns, behavior, morphology, and
physiology, between areas where one or more shark species
are absent. The effects of competition could be assessed based
on how habitat selection of a reef shark species compares
at a location where it is found alone, versus one where it
coexists with other species (Papastamatiou et al., 2018). The
ecological role of sharks has also been assessed by looking
at how reef fish diet, composition, and morphology varies at
atolls where reef sharks are found versus where they are rare
because of population declines (Ruppert et al., 2013; Barley
et al., 2017; Hammerschlag et al., 2018). Problems with these
approaches are twofold: (1) they require the serendipitous
presence of locations where different combinations of species
can be found (e.g., a location where a competing species is
absent), and (2) there will always be confounding factors that
might influence patterns that are very difficult to dismiss as
alternative explanations of observed patterns. Despite these
issues, ‘semi-natural experiments’ provide a vital alternative
to experimental manipulations, as long as the limitations are
acknowledged.

Also lacking is the rigorous use of theoretical ecology
and custom-built simulation models, to either test ecological
theory or to offer explanations of behavioral or life history
strategies. Models can be used to predict distribution patterns
of behaviors based on various mechanisms from ecological
theory including habitat use (e.g., ideal free distribution),
competition, predator-prey dynamics, or intra-guild predation
theory. Predictions can be compared to empirical data, which
if in agreement, provides an understanding of underlying
ecological mechanisms. Alternatively, models can be used to
determine what mechanisms are needed for observed empirical
patterns to arise. Individual based models (IBMs) operate
using a series of ‘agents’ where interactions and movement
rules (e.g., swim speeds, competitive interactions, etc.) can
be incorporated into the simulations (Grimm and Railsback,
2005). IBMs have been used to estimate reef shark density
and diel movements, as well as provide an understanding
of potential mechanisms driving spatial separation between
species (Vanderklift et al., 2014; Papastamatiou et al., 2018).
Other modeling methods can be used to understand the
mechanisms behind observed behaviors or life history
strategies. These can include dynamic state models and
game theoretic models, to name a few. Dynamic state
models incorporate state variables such as behavior (e.g.,
should the animal feed or reproduce) and physiology (e.g.,
stomach fullness) to make predictions about strategies
that maximize lifetime fitness (Clarke and Mangel, 1999).
Game theory models can be used to understand what
shapes predator or prey behavior, and have revealed that
white shark hunting behavior is most likely tailored to
the behavior of juvenile seals (Laroche et al., 2008). These
models will provide a much greater understanding of the
mechanisms driving reef shark distribution patterns and
behaviors.
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How Do We Overcome the Challenges of
Studying Sharks on Coral Reefs?
Solving challenges will help move the science of reef sharks
forward. Some solutions include:

Energetic Experiments
A wide range of ecological questions require an understanding
of energetics. Energy consumption provides insight into resource
requirements of reef sharks, and direct density-mediated effects
on prey. For example, energetics can be used to estimate annual
or seasonal consumption rates of prey species (Mourier et al.,
2016). While much debate exists as to the effects of reef sharks
on coral reefs, accurate estimates of how much prey they are
consuming are lacking. Energetics can be estimated from basic
metabolic scaling laws (simply requiring mass and temperature)
combined with average swim speeds, although these methods
are going to be of relatively low accuracy and not sensitive to
behavioral variability. A more accurate approach is to directly
measure energy consumption of free–ranging individuals, by
combining respirometry with remote measures of activity. Sharks
can be placed in swim tunnels, where oxygen consumption is
measured and compared against some measure of activity (e.g.,
tail beat frequency). By varying swim speeds, the relationship
between activity and oxygen consumption (and after conversion,
metabolic rate) can be estimated (Lowe, 2002; Lear et al., 2017).
Activity can be measured in free-ranging sharks to estimate
real time, field metabolic rates. Field metabolic rates have been
measured in sharks using swim speed, tail-beat frequency, and
acceleration sensors. Accelerometers offer the greatest potential,
as they are small robust sensors, where activity is measured at
high resolution (e.g., 20 Hz), and along three body axes (Whitney
et al., 2012a). The static contribution due to gravity can be
filtered out, and the product of dynamic acceleration from all
axes calculated to estimate overall dynamic body acceleration
(ODBA). ODBA correlates well with oxygen consumption in the
few shark studies that have investigated, providing a metric that
can be reliably measured in the field (Gleiss et al., 2011; Lear
et al., 2017). Due to obvious logistical issues, most energetic
studies have been done with juvenile sharks. While scaling laws
can predict adult metabolic rates, accurate scaling coefficients
for sharks are largely missing. Therefore it is important that
energetics experiments are done with adult reef sharks, which is
now possible due to the recent design of very large respirometers
(Payne et al., 2015).

Life Time Telemetry
One of the significant challenges in understanding the roles
of reef sharks and their ecology is limitation in our ability to
observe their behavior over long periods. Based on the inability
to continuously observe individuals, the most commonly applied
method for understanding reef shark ecology is acoustic
telemetry. This method allows continuous tracking of the
location of individuals while within an acoustic receiver array.
The advent of improved battery power (now lasting at least
10 years) and progress toward self-powered transmitters create
new opportunities to monitor the presence and movement of
individuals over extended periods, including the entire life span

of an individual. These technological advances would allow
researchers to monitor individuals to determine how movement
and space use change through time as an individual grows
and ages, and how they respond to a variety of environmental
conditions including disturbance events and habitat change. As
technology improves and transmitter sizes also decrease, the
capacity to monitor prey species will allow analysis of predator-
prey relationships. For example, predation tags (Halfyard et al.,
2017) may reveal trophic links and food web dynamics among
reef sharks and their prey not previously examined. Current
and future telemetry research also needs better integration
with environmental data to help determine potential drivers of
movement and residence. Although coral reef ecosystems often
have relatively stable environmental conditions, the influence
of tropical storms (e.g., cyclones, hurricanes, and typhoons),
upwelling, marine heatwave events, runoff or other factors
can influence the presence and movements of reef sharks.
Consideration should be given to conducting telemetry in
conjunction with collection of environmental parameters (e.g.,
water temperature, wind state, tide, turbidity, etc.) to better
understand these links.

Genetic Surveys and Bioinformatics
The use of genetic and genome-wide markers to investigate
reef shark ecology and behavior is increasing as sequencing
technology becomes cheaper and more readily available.
Statistical toolsets now available for analyzing thousands
of genetic markers (loci) are increasing our precision of
marker selection and subsequent interpretation of genetic
patterns. To date, only a few studies have investigated
population connectivity and stock structure of reef sharks
using whole genome markers (e.g., Maisano Delser et al.,
2016; Momigliano et al., 2017; Pazmiño et al., 2018), however,
this is likely to increase. The capacity to capture and
sequence thousands of regions across the genome often
provides more robust estimates of population structure than
microsatellite markers (Rašić et al., 2014). The power to
determine stock structure and adaptive processes occurring
within genomes might help to uncover subtle structure between
closely located regions, as was the case for bonnethead
(S. tiburo) sharks (Portnoy et al., 2015). However, sampling
design must be considered especially for reef-generalist species
such as the common carcharhinid species, as stepping stone
migration patterns may lead to genetically homogeneous
populations at relatively large scales (Momigliano et al.,
2017). Given the often patchy and isolated distributions
of reef sharks, sampling at a number of connected and
disconnected reef locations is likely to describe the boundaries
of gene flow across broad regions and better inform the
frequency of broad scale movements across areas of open-
ocean.

Accessing regions of the genome under selective pressure will
build our understanding of the adaptive capacities of sharks.
Identifying how species genetically react and adapt to changing
environmental conditions will be important, especially for reef-
resident species that display little dispersal potential. Given
the effect of climate change is relatively unknown on reef
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sharks (see above) understanding the physiological requirements
driving adaption is of interest. Studies have shown some reef
associated teleost species (e.g., the spiny chromis damselfish,
Acanthochromis polyacanthus) have the capacity for epigenetic
acclimation to cope with increasing SSTs (Donelson et al., 2011).
Epigenetics assesses the inherited change of gene expression for
important regulatory genes, driving phenotypic adaptation in
response to varying environmental conditions (Feil and Fraga,
2012). A population of the winter skate (Leucoraja ocellata)
has been shown capable of epigenetic variation when exposed
to conditions of increasing water temperatures (Lighten et al.,
2016). Water temperatures along the Northumberland Strait,
Atlantic Ocean, are higher than that of surround areas, the
effect has caused epigenetic processes to drive morphological
differences for the population residing in warmer waters
including; reduced body size, maturation time and size of
egg cases. The Northumberland Strait formed approximately
7000 years ago, therefore adaptation to this environment has
occurred over 318 generations. This is relatively short timeframe
for epigenetic-driven phenotyping adaption, however, does not
provide information if and how rapid adaption can occur in
elasmobranch. Given epigenetic variation is a heritable trait, the
slow life history characteristics of elasmobranchs suggests their
tendency for rapid evolutionary change may be reduced. It would
be of great interest to understand if epigenetic variations can
be quickly accumulated in elasmobranchs providing adaptive
traits in time to cope with the threat of future climate change
conditions.

As our understanding of the shark genome increases, so
does the opportunity to investigate other aspects of reef shark
ecology and behaviors. These include the capacity to determine
chromosomal composition of sharks, allowing the investigation
of specific male-biased movements and also sex-determination
in reef sharks. With regard to trophic ecology, stomach
content analysis using genetic or genomic DNA techniques
can select short fragments of sequence suitable for species
identification and diet analysis (Devloo-Delva et al., 2018).
DNA diet analyses have been successful in a number of teleost
and shark species (e.g., Barnett et al., 2010; Harms-Tuohy
et al., 2016) and are likely to be beneficial for determining
the functional role of reef sharks within ecosystems. Future
genomic techniques may also provide a measure of age for
reef sharks without lethal sampling for vertebrae by assessing
age biomarkers based on epigenetic changes (Jarman et al.,
2015). Many of these techniques are currently available and
are beginning to be employed, while other techniques require
accurately annotated genomes, a resource not yet available for
sharks.

The emergence of novel techniques such as environmental
DNA (eDNA) can allow researchers to monitor the presence
of cryptic and/or threatened species based on traces of their
DNA found in the environment (Simpfendorfer et al., 2016;
Boussarie et al., 2018). The use of eDNA has proven to
be a valuable and cost-effective approach to monitor reef-
associated sharks across large spatial scales when compared to
fisheries independent sampling techniques such as visual census
or baited underwater videos (Bakker et al., 2017; Boussarie

et al., 2018). Therefore, combining eDNA with traditional
sampling techniques at strategic locations along the coast or
at remote islands can provide important information on shark
and ray species that naturally occur in low abundances, and
may also help identify critical habitats for their conservation.
Further application of eDNA approaches could help reveal the
distribution and occurrence of reef sharks.

Developing Theoretical Models
The development of predictive models that relate reef sharks
to their habitats and ecosystems have the potential to inform
the debate about their role and importance in coral reef
systems. As data have accumulated, some of these models have
emerged in the literature. Network analysis, for example has been
used several times to investigate patterns of shark movement
within coral reef systems and develop deeper understandings
of behavior (e.g., Jacoby et al., 2016; Heupel et al., 2018).
Ecosystem models such as Ecopath and EcoSim have been
applied to coral reef systems to investigate the trophic role
of sharks (e.g., Polovina, 1984; Stevens et al., 2000). However,
these models require large amounts of data to accurately reflect
the complexity of trophic systems on coral reefs, and to date
have not reached their full potential for understanding the
role of sharks in these systems. The use of individual-based
models has the potential to improve our understanding of the
function of sharks on coral reefs as they can capture interactions
between individuals, groups and their environment. Individual-
based modes have been used to estimate the density of blacktip
reef sharks at Ningaloo Reef (Vanderklift et al., 2014) and
predict factors driving spatial separation between coexisting
shark species (Papastamatiou et al., 2018). There is great scope
for predictive models to improve our understanding of reef
sharks and identify emergent patterns in their behavior and
function.

CONCLUDING COMMENTS

Many of the issues and questions identified here may be resolved
with improvements in technological and analytical advances,
but it is clear that our understanding of reef sharks is largely
limited to medium- to large-bodied carcharinid species that
are commonly encountered. Species that are cryptic, transient
or occur in lower abundances are almost unknown in the
scientific literature beyond basic descriptions and distributions.
To fully understand the role of reef sharks requires an
understanding of the entire community that occurs in this
habitat.

Thus, despite decades of study of reef sharks, there are
extensive knowledge gaps. While this review defines some of
the current knowledge gaps for these species, this is not an
exhaustive list and many other shortfalls in information persist.
Future studies of reef sharks should work to address some of
the fundamental gaps in understanding the basic biology and life
history of reef sharks in addition to definition of their ecological
role and responses to environmental perturbation. Given the
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complexities of coral reef ecosystems a large amount of research
will be required to answer some of the fundamental questions
identified here, but answers are required to improve our
management and conservation of these species and ecosystems.
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