115 research outputs found

    d-wave Superconductivity in the Hubbard Model

    Full text link
    The superconducting instabilities of the doped repulsive 2D Hubbard model are studied in the intermediate to strong coupling regime with help of the Dynamical Cluster Approximation (DCA). To solve the effective cluster problem we employ an extended Non Crossing Approximation (NCA), which allows for a transition to the broken symmetry state. At sufficiently low temperatures we find stable d-wave solutions with off-diagonal long range order. The maximal Tc150KT_c\approx 150K occurs for a doping δ20\delta\approx 20% and the doping dependence of the transition temperatures agrees well with the generic high-TcT_c phase diagram.Comment: 5 pages, 5 figure

    Relationships between Larval and Juvenile Abundance of Winter-Spawned Fishes in North Carolina, USA

    Get PDF
    We analyzed the relationships between the larval and juvenile abundances of selected estuarine-dependent fishes that spawn during the winter in continental shelf waters of the U.S. Atlantic coast. Six species were included in the analysis based on their ecological and economic importance and relative abundance in available surveys: spot Leiostomus xanthurus, pinfish Lagodon rhomboides, southern flounder Paralichthys lethostigma, summer flounder Paralichthys dentatus, Atlantic croaker Micropogonias undulatus, and Atlantic menhaden Brevoortia tyrannus. Cross-correlation analysis was used to examine the relationships between the larval and juvenile abundances within species. Tests of synchrony across species were used to find similarities in recruitment dynamics for species with similar winter shelf-spawning life-history strategies. Positive correlations were found between the larval and juvenile abundances for three of the six selected species (spot, pinfish, and southern flounder). These three species have similar geographic ranges that primarily lie south of Cape Hatteras. There were no significant correlations between the larval and juvenile abundances for the other three species (summer flounder, Atlantic croaker, and Atlantic menhaden); we suggest several factors that could account for the lack of a relationship. Synchrony was found among the three southern species within both the larval and juvenile abundance time series. These results provide support for using larval ingress measures as indices of abundance for these and other species with similar geographic ranges and winter shelf-spawning life-history strategies

    Systematic and Causal Corrections to the Coherent Potential Approximation

    Get PDF
    The Dynamical Cluster Approximation (DCA) is modified to include disorder. The DCA incorporates non-local corrections to local approximations such as the Coherent Potential Approximation (CPA) by mapping the lattice problem with disorder, and in the thermodynamic limit, to a self-consistently embedded finite-sized cluster problem. It satisfies all of the characteristics of a successful cluster approximation. It is causal, preserves the point-group and translational symmetry of the original lattice, recovers the CPA when the cluster size equals one, and becomes exact as NcN_c\to\infty. We use the DCA to study the Anderson model with binary diagonal disorder. It restores sharp features and band tailing in the density of states which reflect correlations in the local environment of each site. While the DCA does not describe the localization transition, it does describe precursor effects of localization.Comment: 11 pages, LaTeX, and 11 PS figures, to appear in Phys. Rev. B. Revised version with typos corrected and references adde

    Cellular Dynamical Mean Field Approach to Strongly Correlated Systems

    Full text link
    We propose a cellular version of dynamical-mean field theory which gives a natural generalization of its original single-site construction and is formulated in different sets of variables. We show how non-orthogonality of the tight-binding basis sets enters the problem and prove that the resulting equations lead to manifestly causal self energies.Comment: RevTex, 4 pages, 1 embedded figur

    Fictive Impurity Models: an Alternative Formulation of the Cluster Dynamical Mean Field Method

    Full text link
    "Cluster" extensions of the dynamical mean field method to include longer range correlations are discussed. It is argued that the clusters arising in these methods are naturally interpreted not as actual subunits of a physical lattice but as algorithms for computing coefficients in an orthogonal function expansion of the momentum dependence of the electronic self-energy. The difficulties with causality which have been found to plague cluster dynamical mean field methods are shown to be related to the "ringing" phenomenon familiar from Fourier analysis. The analogy is used to motivate proposals for simple filtering methods to circumvent them. The formalism is tested by comparison to low order perturbative calculations and self consistent solutions

    Microwave Conductivity due to Impurity Scattering in a d-wave Superconductor

    Full text link
    The self-consistent t-matrix approximation for impurity scattering in unconventional superconductors is used to interpret recent measurements of the temperature and frequency dependence of the microwave conductivity of YBCO crystals below 20K. In this theory, the conductivity is expressed in terms of a fequency dependent single particle self-energy, determined by the impurity scattering phase shift which is small for weak (Born) scattering and approaches π/2\pi / 2 for unitary scattering. Inverting this process, microwave conductivity data are used to extract an effective single-particle self-energy and obtain insight into the nature of the operative scattering processes. It is found that the effective self-energy is well approximated by a constant plus a linear term in frequency with a small positive slope for thermal quasiparticle energies below 20K. Possible physical origins of this form of self-energy are discussed.Comment: 5 pages, 4 figure

    Andreev tunnelling in quantum dots: A slave-boson approach

    Get PDF
    We study a strongly interacting quantum dot connected to a normal and to a superconducting lead. By means of the slave-boson technique we investigate the low temperature regime and discuss electrical transport through the dot. We find that the zero bias anomaly in the current-voltage characteristics which is associated to the occurance of the Kondo resonance in the quantum dot, is enhanced in the presence of superconductivity, due to resonant Andreev scattering.Comment: 4 pages, 1 figur

    Fate of Quasiparticle at Mott Transition and Interplay with Lifshitz Transition Studied by Correlator Projection Method

    Full text link
    Filling-control metal-insulator transition on the two-dimensional Hubbard model is investigated by using the correlator projection method, which takes into account momentum dependence of the free energy beyond the dynamical mean-field theory. The phase diagram of metals and Mott insulators is analyzed. Lifshitz transitions occur simultaneously with metal-insulator transitions at large Coulomb repulsion. On the other hand, they are separated each other for lower Coulomb repulsion, where the phase sandwiched by the Lifshitz and metal-insulator transitions appears to show violation of the Luttinger sum rule. Through the metal-insulator transition, quasiparticles retain nonzero renormalization factor and finite quasi-particle weight in the both sides of the transition. This supports that the metal-insulator transition is caused not by the vanishing renormalization factor but by the relative shift of the Fermi level into the Mott gap away from the quasiparticle band, in sharp contrast with the original dynamical mean-field theory. Charge compressibility diverges at the critical end point of the first-order Lifshitz transition at finite temperatures. The origin of the divergence is ascribed to singular momentum dependence of the quasiparticle dispersion.Comment: 24 pages including 10 figure

    Antiferromagnetism and d-wave superconductivity in cuprates: a uster DMFT study

    Full text link
    We present a new approach to investigate the coexistence of antiferromagnetism and d-wave superconductivity in the two dimensional extended Hubbard model within a numerically exact cluster dynamical mean-field approximation. Self-consistent solutions with two non-zero order parameters exists in the wide range of doping level and temperatures. A linearized equation for energy spectrum near the Fermi level have been solved. The resulting d-wave gap has the correct magnitude and k-dependence but some distortion compare to the pure d_{x^2-y^2} superconducting order parameter due to the presence of underlying antiferromagnetic ordering.Comment: 4 pages, 3 figure

    Functional renormalization group approach to zero-dimensional interacting systems

    Full text link
    We apply the functional renormalization group method to the calculation of dynamical properties of zero-dimensional interacting quantum systems. As case studies we discuss the anharmonic oscillator and the single impurity Anderson model. We truncate the hierarchy of flow equations such that the results are at least correct up to second order perturbation theory in the coupling. For the anharmonic oscillator energies and spectra obtained within two different functional renormalization group schemes are compared to numerically exact results, perturbation theory, and the mean field approximation. Even at large coupling the results obtained using the functional renormalization group agree quite well with the numerical exact solution. The better of the two schemes is used to calculate spectra of the single impurity Anderson model, which then are compared to the results of perturbation theory and the numerical renormalization group. For small to intermediate couplings the functional renormalization group gives results which are close to the ones obtained using the very accurate numerical renormalization group method. In particulare the low-energy scale (Kondo temperature) extracted from the functional renormalization group results shows the expected behavior.Comment: 22 pages, 8 figures include
    corecore