5 research outputs found

    MuSK induces in vivo acetylcholine receptor clusters in a ligand-independent manner

    Get PDF
    Muscle-specific receptor tyrosine kinase (MuSK) is required for the formation of the neuromuscular junction. Using direct gene transfer into single fibers, MuSK was expressed extrasynaptically in innervated rat muscle in vivo to identify its contribution to synapse formation. Spontaneous MuSK kinase activity leads, in the absence of its putative ligand neural agrin, to the appearance of ε-subunit–specific transcripts, the formation of acetylcholine receptor clusters, and acetylcholinesterase aggregates. Expression of kinase-inactive MuSK did not result in the formation of acetylcholine receptor (AChR) clusters, whereas a mutant MuSK lacking the ectodomain did induce AChR clusters. The contribution of endogenous MuSK was excluded by using genetically altered mice, where the kinase domain of the MuSK gene was flanked by loxP sequences and could be deleted upon expression of Cre recombinase. This allowed the conditional inactivation of endogenous MuSK in single muscle fibers and prevented the induction of ectopic AChR clusters. Thus, the kinase activity of MuSK initiates signals that are sufficient to induce the formation of AChR clusters. This process does not require additional determinants located in the ectodomain

    Localization of the AP-3 adaptor complex defines a novel endosomal exit site for lysosomal membrane proteins

    Get PDF
    The adaptor protein (AP) 3 adaptor complex has been implicated in the transport of lysosomal membrane proteins, but its precise site of action has remained controversial. Here, we show by immuno-electron microscopy that AP-3 is associated with budding profiles evolving from a tubular endosomal compartment that also exhibits budding profiles positive for AP-1. AP-3 colocalizes with clathrin, but to a lesser extent than does AP-1. The AP-3– and AP-1–bearing tubular compartments contain endocytosed transferrin, transferrin receptor, asialoglycoprotein receptor, and low amounts of the cation-independent mannose 6-phosphate receptor and the lysosome-associated membrane proteins (LAMPs) 1 and 2. Quantitative analysis revealed that of these distinct cargo proteins, only LAMP-1 and LAMP-2 are concentrated in the AP-3–positive membrane domains. Moreover, recycling of endocytosed LAMP-1 and CD63 back to the cell surface is greatly increased in AP-3–deficient cells. Based on these data, we propose that AP-3 defines a novel pathway by which lysosomal membrane proteins are transported from tubular sorting endosomes to lysosomes
    corecore