43 research outputs found

    Targeted transcriptomics reveals signatures of large-scale independent origins and concerted regulation of effector genes in Radopholus similis.

    Get PDF
    The burrowing nematode, Radopholus similis, is an economically important plant-parasitic nematode that inflicts damage and yield loss to a wide range of crops. This migratory endoparasite is widely distributed in warmer regions and causes extensive destruction to the root systems of important food crops (e.g., citrus, banana). Despite the economic importance of this nematode, little is known about the repertoire of effectors owned by this species. Here we combined spatially and temporally resolved next-generation sequencing datasets of R. similis to select a list of candidates for the identification of effector genes for this species. We confirmed spatial expression of transcripts of 30 new candidate effectors within the esophageal glands of R. similis by in situ hybridization, revealing a large number of pioneer genes specific to this nematode. We identify a gland promoter motif specifically associated with the subventral glands (named Rs-SUG box), a putative hallmark of spatial and concerted regulation of these effectors. Nematode transcriptome analyses confirmed the expression of these effectors during the interaction with the host, with a large number of pioneer genes being especially abundant. Our data revealed that R. similis holds a diverse and emergent repertoire of effectors, which has been shaped by various evolutionary events, including neofunctionalization, horizontal gene transfer, and possibly by de novo gene birth. In addition, we also report the first GH62 gene so far discovered for any metazoan and putatively acquired by lateral gene transfer from a bacterial donor. Considering the economic damage caused by R. similis, this information provides valuable data to elucidate the mode of parasitism of this nematode

    Botryosphaeria dothidea : a latent pathogen of global importance to woody plant health

    Get PDF
    Botryosphaeria dothidea is the type species of Botryosphaeria (Botryosphaeriaceae, Botryosphaeriales). Fungi residing in this order are amongst the most widespread and important canker and dieback pathogens of trees worldwide, with B. dothidea one of the most common species on a large number of hosts. Its taxonomic circumscription has undergone substantial change in the past decade, making it difficult to interpret the large volume of literature linked to the name B. dothidea. This pathogen profile synthesises the current understanding of B. dothidea pertaining to its distribution, host associations and its role as a pathogen in managed and natural woody environments. The prolonged latent infection or endophytic phase is of particular importance as it implies that the fungus can easily pass undetected by quarantine systems in traded living plants, fruits and other plant parts. Infections typically become obvious only under conditions of host stress, when disease symptoms develop. This study also considers the knowledge emerging from the recently sequenced B. dothidea genome elucidating previously unknown aspects of the species, including mating and hostinfection strategies. Despite more than 150 years of research on B. dothidea, there is clearly much to be learned regarding this global tree pathogen. This is increasingly important given the stresses imposed on various woody hosts due to climate change.The National Research Foundation (NRF) of South Africa and members of the Tree Protection Co-operative Programme (TPCP).http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1364-37032018-05-31hb2017GeneticsMicrobiology and Plant Patholog

    Appunti sul movimento antifascista sloveno della Venezia Giulia

    Get PDF
    <div><p>The class <em>Dothideomycetes</em> is one of the largest groups of fungi with a high level of ecological diversity including many plant pathogens infecting a broad range of hosts. Here, we compare genome features of 18 members of this class, including 6 necrotrophs, 9 (hemi)biotrophs and 3 saprotrophs, to analyze genome structure, evolution, and the diverse strategies of pathogenesis. The <em>Dothideomycetes</em> most likely evolved from a common ancestor more than 280 million years ago. The 18 genome sequences differ dramatically in size due to variation in repetitive content, but show much less variation in number of (core) genes. Gene order appears to have been rearranged mostly within chromosomal boundaries by multiple inversions, in extant genomes frequently demarcated by adjacent simple repeats. Several <em>Dothideomycetes</em> contain one or more gene-poor, transposable element (TE)-rich putatively dispensable chromosomes of unknown function. The 18 <em>Dothideomycetes</em> offer an extensive catalogue of genes involved in cellulose degradation, proteolysis, secondary metabolism, and cysteine-rich small secreted proteins. Ancestors of the two major orders of plant pathogens in the <em>Dothideomycetes</em>, the <em>Capnodiales</em> and <em>Pleosporales</em>, may have had different modes of pathogenesis, with the former having fewer of these genes than the latter. Many of these genes are enriched in proximity to transposable elements, suggesting faster evolution because of the effects of repeat induced point (RIP) mutations. A syntenic block of genes, including oxidoreductases, is conserved in most <em>Dothideomycetes</em> and upregulated during infection in <em>L. maculans</em>, suggesting a possible function in response to oxidative stress.</p> </div
    corecore