34 research outputs found

    Seed Invasion Filters and Forest Fire Severity

    Get PDF
    Forest seed dispersal is altered after fire. Using seed traps, we studied impacts of fire severity on timing of seed dispersal, total seed rain, and seed rain richness in patches of high and low severity fire and unburned Douglas-fir (Pseudotsuga menziesii) forests in the Fischer and Tyee fire complexes in the eastern Washington Cascades. Unburned plots had the lowest average seed production. The high severity fire patches in the Fischer Fire Complex had a higher total seed production than low severity fire patches of the same complex. At the Tyee Fire Complex, the total seed production for each of the two fire severities was similar, but the period of maximum seed dispersal was later for high severity than low severity fire. Seed rain at the Fischer Fire patches (sampled one year after the fire) was predominantly composed of annual species, while that of the Tyee Fire patches (sampled nine years after fire) was predominantly perennial species. Seed rain richness was greater in Tyee high severity patches than paired low severity fire patches. In these paired Tyee patches the average number of new seed species (species not found in the extant plot vegetation) was greater for high severity than low severity fire. Our results suggest that high severity fire plots are more porous to seed rain than low severity plots. Intact forest canopies may filter seed rain and reduce seed influx, while high severity fires are more open to invasion by seed dispersal

    Wildfire may increase habitat quality for spring Chinook salmon in the Wenatchee River subbasin, WA, USA

    Get PDF
    Pacific Northwest salmonids are adapted to natural disturbance regimes that create dynamic habitat patterns over space and through time. However, human land use, particularly long-term fire suppression, has altered the intensity and frequency of wildfire in forested upland and riparian areas. To examine the potential impacts of wildfire on aquatic systems, we developed stream-reach-scale models of freshwater habitat for three life stages (adult, egg/fry, and juvenile) of spring Chinook salmon (Oncorhynchus tshawytscha) in the Wenatchee River subbasin, Washington. We used variables representing pre- and post-fire habitat conditions and employed novel techniques to capture changes in in-stream fine sediment, wood, and water temperature. Watershed-scale comparisons of high-quality habitat for each life stage of spring Chinook salmon habitat suggested that there are smaller quantities of high-quality juvenile overwinter habitat as compared to habitat for other life stages. We found that wildfire has the potential to increase quality of adult and overwintering juvenile habitat through increased delivery of wood, while decreasing the quality of egg and fry habitat due to the introduction of fine sediments. Model results showed the largest effect of fire on habitat quality associated with the juvenile life stage, resulting in increases in high-quality habitat in all watersheds. Due to the limited availability of pre-fire high-quality juvenile habitat, and increased habitat quality for this life stage post-fire, occurrence of characteristic wildfires would likely create a positive effect on spring Chinook salmon habitat in the Wenatchee River subbasin. We also compared pre- and post-fire model results of freshwater habitat for each life stage, and for the geometric mean of habitat quality across all life stages, using current compared to the historic distribution of spring Chinook salmon. We found that spring Chinook salmon are currently distributed in stream channels in which in-stream habitat for most life stages has a consistently positive response to fire. This compares to the historic distribution of spring Chinook, in which in-stream habitat exhibited a variable response to fire, including decreases in habitat quality overall or for specific life stages. This suggests that as the distribution of spring Chinook has decreased, they now occupy those areas with the most positive potential response to fire. Our work shows the potentially positive link between wildfire and aquatic habitat that supports forest managers in setting broader goals for fire management, perhaps leading to less fire suppression in some situations

    Tamm Review: Management of mixed-severity fire regime forests in Oregon, Washington, and Northern California

    Get PDF
    Increasingly, objectives for forests with moderate- or mixed-severity fire regimes are to restore successionally diverse landscapes that are resistant and resilient to current and future stressors. Maintaining native species and characteristic processes requires this successional diversity, but methods to achieve it are poorly explained in the literature. In the Inland Pacific US, large, old, early seral trees were a key historical feature of many young and old forest successional patches, especially where fires frequently occurred. Large, old trees are naturally fire-tolerant, but today are often threatened by dense understory cohorts that create fuel ladders that alter likely post-fire successional pathways. Reducing these understories can contribute to resistance by creating conditions where canopy trees will survive disturbances and climatic stressors; these survivors are important seed sources, soil protectors, and critical habitat elements. Historical timber harvesting has skewed tree size and age class distributions, created hard edges, and altered native patch sizes. Manipulating these altered forests to promote development of larger patches of older, larger, and more widely-spaced trees with diverse understories will increase landscape resistance to severe fires, and enhance wildlife habitat for underrepresented conditions. Closed-canopy, multi-layered patches that develop in hot, dry summer environments are vulnerable to droughts, and they increase landscape vulnerability to insect outbreaks and severe wildfires. These same patches provide habitat for species such as the northern spotted owl, which has benefited from increased habitat area. Regional and local planning will be critical for gauging risks, evaluating trade-offs, and restoring dynamics that can support these and other species. The goal will be to manage for heterogeneous landscapes that include variably-sized patches of (1) young, middle-aged, and old, closed canopy forests growing in upper montane, northerly aspect, and valley bottom settings, (2) a similar diversity of open-canopy, fire-tolerant patches growing on ridgetops, southerly aspects, and lower montane settings, and (3) significant montane chaparral and grassland areas. Tools to achieve this goal include managed wildfire, prescribed burning, and variable density thinning at small to large scales. Specifics on ‘‘how much and where?” will vary according to physiographic, topographic and historical templates, and regulatory requirements, and be determined by means of a socio-ecological process

    Tamm Review: Management of mixed-severity fire regime forests in Oregon, Washington, and Northern California

    Get PDF
    Increasingly, objectives for forests with moderate- or mixed-severity fire regimes are to restore successionally diverse landscapes that are resistant and resilient to current and future stressors. Maintaining native species and characteristic processes requires this successional diversity, but methods to achieve it are poorly explained in the literature. In the Inland Pacific US, large, old, early seral trees were a key historical feature of many young and old forest successional patches, especially where fires frequently occurred. Large, old trees are naturally fire-tolerant, but today are often threatened by dense understory cohorts that create fuel ladders that alter likely post-fire successional pathways. Reducing these understories can contribute to resistance by creating conditions where canopy trees will survive disturbances and climatic stressors; these survivors are important seed sources, soil protectors, and critical habitat elements. Historical timber harvesting has skewed tree size and age class distributions, created hard edges, and altered native patch sizes. Manipulating these altered forests to promote development of larger patches of older, larger, and more widely-spaced trees with diverse understories will increase landscape resistance to severe fires, and enhance wildlife habitat for underrepresented conditions. Closed-canopy, multi-layered patches that develop in hot, dry summer environments are vulnerable to droughts, and they increase landscape vulnerability to insect outbreaks and severe wildfires. These same patches provide habitat for species such as the northern spotted owl, which has benefited from increased habitat area. Regional and local planning will be critical for gauging risks, evaluating trade-offs, and restoring dynamics that can support these and other species. The goal will be to manage for heterogeneous landscapes that include variably-sized patches of (1) young, middle-aged, and old, closed canopy forests growing in upper montane, northerly aspect, and valley bottom settings, (2) a similar diversity of open-canopy, fire-tolerant patches growing on ridgetops, southerly aspects, and lower montane settings, and (3) significant montane chaparral and grassland areas. Tools to achieve this goal include managed wildfire, prescribed burning, and variable density thinning at small to large scales. Specifics on ‘‘how much and where?” will vary according to physiographic, topographic and historical templates, and regulatory requirements, and be determined by means of a socio-ecological process

    J Geograph Syst (2006) DOI 10.1007/s10109-006-0025-x ORIGINAL ARTICLE

    No full text
    Mapcurves: a quantitative method for comparing categorical maps Ó Springer-Verlag 2006 Abstract We present Mapcurves, a quantitative goodness-of-fit (GOF) method that unambiguously shows the degree of spatial concordance between two or more categorical maps. Mapcurves graphically and quantitatively evaluate the degree of fit among any number of maps and quantify a GOF for each polygon, as well as the entire map. The Mapcurve method indicates a perfect fit even if all polygons in one map are comprised of unique sets of the polygons in another map, if the coincidence among map categories is absolute. It is not necessary to interpret (or even know) legend descriptors for the categories in the maps to be compared, since the degree of fit in the spatial overlay alone forms the basis for the comparison. This feature makes Mapcurves ideal for comparing maps derived from remotely sensed images. A translation table is provided for the categories in each map as an output. Since the comparison is category-based rather than cell-based, the GOF is resolution-independent. Mapcurves can be applied either to entire map categories or to individual raster patches or vector polygons. Mapcurves also have applications for quantifying the spatial uncertainty of particular map features
    corecore