10,398 research outputs found

    Spin dynamics and magnetic interactions of Mn dopants in the topological insulator Bi2_2Te3_3

    Full text link
    The magnetic and electronic properties of the magnetically doped topological insulator Bi2−x_{\rm 2-x}Mnx_{\rm x}Te3_3 were studied using electron spin resonance (ESR) and measurements of static magnetization and electrical transport. The investigated high quality single crystals of Bi2−x_{\rm 2-x}Mnx_{\rm x}Te3_3 show a ferromagnetic phase transition for x≥0.04x\geq 0.04 at TC≈12T_{C}\approx 12 K. The Hall measurements reveal a p-type finite charge-carrier density. Measurements of the temperature dependence of the ESR signal of Mn dopants for different orientations of the external magnetic field give evidence that the localized Mn moments interact with the mobile charge carriers leading to a Ruderman-Kittel-Kasuya-Yosida-type ferromagnetic coupling between the Mn spins of order 2-3 meV. Furthermore, ESR reveals a low-dimensional character of magnetic correlations that persist far above the ferromagnetic ordering temperature

    Low-lying Quasiparticle Excitations around a Vortex Core in Quantum Limit

    Full text link
    Focusing on a quantum-limit behavior, we study a single vortex in a clean s-wave type-II superconductor by self-consistently solving the Bogoliubov-de Gennes equation. The discrete energy levels of the vortex bound states in the quantum limit is discussed. The vortex core radius shrinks monotonically up to an atomic-scale length on lowering the temperature T, and the shrinkage stops to saturate at a lower T. The pair potential, supercurrent, and local density of states around the vortex exhibit Friedel-like oscillations. The local density of states has particle-hole asymmetry induced by the vortex. These are potentially observed directly by STM.Comment: 4 pages, 6 figure

    Collective Modes of Tri-Nuclear Molecules

    Get PDF
    A geometrical model for tri-nuclear molecules is presented. An analytical solution is obtained provided the nuclei, which are taken to be prolately deformed, are connected in line to each other. Furthermore, the tri-nuclear molecule is composed of two heavy and one light cluster, the later sandwiched between the two heavy clusters. A basis is constructed in which Hamiltonians of more general configurations can be diagonalized. In the calculation of the interaction between the clusters higher multipole deformations are taken into account, including the hexadecupole one. A repulsive nuclear core is introduced in the potential in order to insure a quasi-stable configuration of the system. The model is applied to three nuclear molecules, namely 96^{96}Sr + 10^{10}Be + 146^{146}Ba, 108^{108}Mo + 10^{10}Be + 134^{134}Te and 112^{112}Ru + 10^{10}Be + 130^{130}Sn.Comment: 24 pages, 9 figure

    Crystal and magnetic structure of the oxypnictide superconductor LaO(1-x)FxFeAs: evidence for magnetoelastic coupling

    Full text link
    High-resolution and high-flux neutron as well as X-ray powder-diffraction experiments were performed on the oxypnictide series LaO(1-x)FxFeAs with 0<x<0.15 in order to study the crystal and magnetic structure. The magnetic symmetry of the undoped compound corresponds to those reported for ReOFeAs (with Re a rare earth) and for AFe2As2 (A=Ba, Sr) materials. We find an ordered magnetic moment of 0.63(1)muB at 2 K in LaOFeAs, which is significantly larger than the values previously reported for this compound. A sizable ordered magnetic moment is observed up to a F-doping of 4.5% whereas there is no magnetic order for a sample with a F concentration of x=0.06. In the undoped sample, several interatomic distances and FeAs4 tetrahedra angles exhibit pronounced anomalies connected with the broad structural transition and with the onset of magnetism supporting the idea of strong magneto-elastic coupling in this material.Comment: 8 pages, 7 figures, regular articl

    Spin Gap in the Single Spin-1/2 Chain Cuprate Sr1.9_{1.9}Ca0.1_{0.1}CuO3_3

    Full text link
    We report 63^{63}Cu nuclear magnetic resonance and muon spin rotation measurements on the S=1/2 antiferromagnetic Heisenberg spin chain compound Sr1.9_{1.9}Ca0.1_{0.1}CuO3_3. An exponentially decreasing spin-lattice relaxation rate 1/T1_1 indicates the opening of a spin gap. This behavior is very similar to what has been observed for the cognate zigzag spin chain compound Sr0.9_{0.9}Ca0.1_{0.1}CuO2_2, and confirms that the occurrence of a spin gap upon Ca doping is independent of the interchain exchange coupling J′J'. Our results therefore generally prove the appearance of a spin gap in an antiferromagnetic Heisenberg spin chain induced by a local bond disorder of the intrachain exchange coupling JJ. A low temperature upturn of 1/T1_1 evidences growing magnetic correlations. However, zero field muon spin rotation measurements down to 1.5 K confirm the absence of magnetic order in this compound which is most likely suppressed by the opening of the spin gap.Comment: 5 pages, 4 figure

    Specific heat of Ca0.32_{0.32}Na0.68_{0.68}Fe2_2As2_2 single crystals: unconventional s±_\pm multi-band superconductivity with intermediate repulsive interband coupling and sizable attractive intraband couplings

    Full text link
    We report a low-temperature specific heat study of high-quality single crystals of the heavily hole doped superconductor Ca0.32_{0.32}Na0.68_{0.68}Fe2_2As2_2. This compound exhibits bulk superconductivity with a transition temperature Tc≈34T_c \approx 34\,K, which is evident from the magnetization, transport, and specific heat measurements. The zero field data manifests a significant electronic specific heat in the normal state with a Sommerfeld coefficient γ≈53\gamma \approx 53 mJ/mol K2^{2}. Using a multi-band Eliashberg analysis, we demonstrate that the dependence of the zero field specific heat in the superconducting state is well described by a three-band model with an unconventional s±_\pm pairing symmetry and gap magnitudes Δi\Delta_i of approximately 2.35, 7.48, and -7.50 meV. Our analysis indicates a non-negligible attractive intraband coupling,which contributes significantly to the relatively high value of TcT_c. The Fermi surface averaged repulsive and attractive coupling strengths are of comparable size and outside the strong coupling limit frequently adopted for describing high-TcT_c iron pnictide superconductors. We further infer a total mass renormalization of the order of five, including the effects of correlations and electron-boson interactions.Comment: 8 Figures, Submitted to PR

    Recursiveness, Switching, and Fluctuations in a Replicating Catalytic Network

    Full text link
    A protocell model consisting of mutually catalyzing molecules is studied in order to investigate how chemical compositions are transferred recursively through cell divisions under replication errors. Depending on the path rate, the numbers of molecules and species, three phases are found: fast switching state without recursive production, recursive production, and itinerancy between the above two states. The number distributions of the molecules in the recursive states are shown to be log-normal except for those species that form a core hypercycle, and are explained with the help of a heuristic argument.Comment: 4 pages (with 7 figures (6 color)), submitted to PR

    Local density of states in the vortex lattice in a type II superconductor

    Full text link
    Local density of states (LDOS) in the triangular vortex lattice is investigated based on the quasi-classical Eilenberger theory. We consider the case of an isotropic s-wave superconductor with the material parameter appropriate to NbSe_2. At a weak magnetic field, the spatial variation of the LDOS shows cylindrical structure around a vortex core. On the other hand, at a high field where the core regions substantially overlap each other, the LDOS is sixfold star-shaped structure due to the vortex lattice effect. The orientation of the star coincides with the experimental data of the scanning tunneling microscopy. That is, the ray of the star extends toward the nearest-neighbor (next nearest-neighbor) vortex direction at higher (lower) energy.Comment: 10 pages, RevTex, 32 figure

    Effects of gap anisotropy upon the electronic structure around a superconducting vortex

    Full text link
    An isolated single vortex is considered within the framework of the quasiclassical theory. The local density of states around a vortex is calculated in a clean type II superconductor with an anisotropy. The anisotropy of a superconducting energy gap is crucial for bound states around a vortex. A characteristic structure of the local density of states, observed in the layered hexagonal superconductor 2H-NbSe2 by scanning tunneling microscopy (STM), is well reproduced if one assumes an anisotropic s-wave gap in the hexagonal plane. The local density of states (or the bound states) around the vortex is interpreted in terms of quasiparticle trajectories to facilitate an understanding of the rich electronic structure observed in STM experiments. It is pointed out that further fine structures and extra peaks in the local density of states should be observed by STM.Comment: 11 pages, REVTeX; 20 PostScript figures; An Animated GIFS file for the star-shaped vortex bound states is available at http://mp.okayama-u.ac.jp/~hayashi/vortex.htm
    • …
    corecore