18,843 research outputs found
Shear-stress controlled dynamics of nematic complex fluids
Based on a mesoscopic theory we investigate the non-equilibrium dynamics of a
sheared nematic liquid, with the control parameter being the shear stress
(rather than the usual shear rate, ). To
this end we supplement the equations of motion for the orientational order
parameters by an equation for , which then becomes time-dependent.
Shearing the system from an isotropic state, the stress- controlled flow
properties turn out to be essentially identical to those at fixed .
Pronounced differences when the equilibrium state is nematic. Here, shearing at
controlled yields several non-equilibrium transitions between
different dynamic states, including chaotic regimes. The corresponding
stress-controlled system has only one transition from a regular periodic into a
stationary (shear-aligned) state. The position of this transition in the
- plane turns out to be tunable by the delay
time entering our control scheme for . Moreover, a sudden
change of the control method can {\it stabilize} the chaotic states appearing
at fixed .Comment: 10 pages, 11 figure
Chemical differentiation of a convecting planetary interior: Consequences for a one-plate planet such as Venus
Chemically depleted mantle forming a buoyant, refractory layer at the top of the mantle can have important implications for the evolution of the interior and surface. On Venus, the large apparent depths of compensation for surface topographic features might be explained if surface topography were supported by variations in the thickness of a 100-200 km thick chemically buoyant mantle layer or by partial melting in the mantle at the base of such a layer. Long volcanic flows seen on the surface may be explained by deep melting that generates low-viscosity MgO-rich magmas. The presence of a shallow refractory mantle layer may also explain the lack of volcanism associated with rifting. As the depleted layer thickens and cools, it becomes denser than the convecting interior and the portion of it that is hot enough to flow can mix with the convecting mantle. Time dependence of the thickness of a depleted layer may create episodic resurfacing events as needed to explain the observed distribution of impact craters on the venusian surface. We consider a planetary structure consisting of a crust, depleted mantle layer, and a thermally and chemically well-mixed convecting mantle. The thermal evolution of the convecting spherical planetary interior is calculated using energy conservation: the time rate of change of thermal energy in the interior is equated to the difference in the rate of radioactive heat production and the rate of heat transfer across the thermal boundary layer. Heat transfer across the thermal boundary layer is parameterized using a standard Nusselt number-Rayleigh number relationship. The radioactive heat production decreases with time corresponding to decay times for the U, Th, and K. The planetary interior cools by the advection of hot mantle at temperature T interior into the thermal boundary layer where it cools conductively. The crust and depleted mantle layers do not convect in our model so that a linear conductive equilibrium temperature distribution is assumed. The rate of melt production is calculated as the product of the volume flux of mantle into the thermal boundary layer and the degree of melting that this mantle undergoes. The volume flux of mantle into the thermal boundary layer is simply the heat flux divided by amount of heat lost in cooling mantle to the average temperature in the thermal boundary layer. The degree of melting is calculated as the temperature difference above the solidus, divided by the latent heat of melting. A maximum degree of melting is prescribed corresponding to the maximum amount of basaltic melt that the mantle can initially generate. As the crust thickens, the pressure at the base of the crust becomes high enough and the temperature remains low enough for basalt to transform to dense eclogite
Analysis and Insights from a Dynamical Model of Nuclear Plant Safety Risk
In this paper, we expand upon previously reported results of a dynamical systems model for the impact of plant processes and programmatic performance on nuclear plant safety risk. We utilize both analytical techniques and numerical simulations typical of the analysis of nonlinear dynamical systems to obtain insights important for effective risk management. This includes use of bifurcation diagrams to show that period doubling bifurcations and regions of chaotic dynamics can occur. We also investigate the impact of risk mitigating functions (equipment reliability and loss prevention) on plant safety risk and demonstrate that these functions are capable of improving risk to levels that are better than those that are represented in a traditional risk assessment. Next, we analyze the system response to the presence of external noise and obtain some conclusions with respect to the allocation of resources to ensure that safety is maintained at optimal levels. In particular, we demonstrate that the model supports the importance of management and regulator attention to plants that have demonstrated poor performance by providing an external stimulus to obtain desired improvements. Equally important, the model suggests that excessive intervention, by either plant management or regulatory authorities, can have a deleterious impact on safety for plants that are operating with very effective programs and processes. Finally, we propose a modification to the model that accounts for the impact of plant risk culture on process performance and plant safety risk. We then use numerical simulations to demonstrate the important safety benefits of a strong risk culture.Nonlinear Dynamical Systems, Process Model, Risk Management
Fluctuations of topological disclination lines in nematics: renormalization of the string model
The fluctuation eigenmode problem of the nematic topological disclination
line with strength is solved for the complete nematic tensor order
parameter. The line tension concept of a defect line is assessed, the line
tension is properly defined. Exact relaxation rates and thermal amplitudes of
the fluctuations are determined. It is shown that within the simple string
model of the defect line the amplitude of its thermal fluctuations is
significantly underestimated due to the neglect of higher radial modes. The
extent of universality of the results concerning other systems possessing line
defects is discussed.Comment: 6 pages, 3 figure
Modelling UV irradiances on arbitrarily oriented surfaces: effects of sky obstructions
International audienceA method is presented to calculate UV irradiances on inclined surfaces that additionally takes into account the influence of sky obstructions caused by obstacles such as mountains, houses, trees, or umbrellas. Thus the method allows calculating the impact of UV radiation on biological systems, such as for instance the human skin or eye, in any natural or artificial environment. The method, a combination of radiation models, is explained and the correctness of its results is demonstrated. The effect of a natural skyline is shown for an Alpine ski area, where the UV irradiance even on a horizontal surface may increase due to reflection at snow by more than 10%. In contrast in a street canyon the irradiance on a horizontal surface is reduced down to 30% in shadow and to about 75% for a position in the sun
Chemical differentiation on one-plate planets: Predictions and geologic observations for Venus
Recent studies have examined the partial melting of planetary interiors on one-plate planets and the implications for the formation and evolution of basaltic crust and the complementary residual mantle layer. In contrast to the Earth, where the crust and residual layer move laterally and are returned to the interior following subduction, one-plate planets such as Venus are characterized by vertical accretion of the crust and residual layer. The residual mantle layer is depleted and compositionally buoyant, being less dense than undepleted mantle due to its reduced Fe/Mg and dense Al-bearing minerals; its melting temperature is also increased. As the crust and depleted mantle layer grow vertically during the thermal evolution of the planet, several stages develop. As a step in the investigation and testing of these theoretical treatments of crustal development on Venus, we investigate the predictions deriving from two of these stages (a stable thick crust and depleted layer, and a thick unstable depleted layer) and compare these to geologic and geophysical observations, speculating on how these might be interpreted in the context of the vertical crustal accretion models. In each case, we conclude with an outline of further tests and observations of these models
XANTUS: rationale and design of a noninterventional study of rivaroxaban for the prevention of stroke in patients with atrial fibrillation.
Atrial fibrillation (AF) is associated with a fivefold increase in the risk of stroke. The Phase III ROCKET AF (Rivaroxaban Once-Daily Oral Direct Factor Xa Inhibition Compared with Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation) trial showed that rivaroxaban, an oral, direct Factor Xa inhibitor, was noninferior to warfarin for the reduction of stroke or systemic embolism in patients with AF. Compared with warfarin, rivaroxaban significantly reduced rates of intracranial and fatal hemorrhages, although not rates of bleeding overall. XANTUS (Xarelto(®) for Prevention of Stroke in Patients with Atrial Fibrillation) is a prospective, international, observational, postauthorization, noninterventional study designed to collect safety and efficacy data on the use of rivaroxaban for stroke prevention in AF in routine clinical practice. The key goal is to determine whether the safety profile of rivaroxaban established in ROCKET AF is also observed in routine clinical practice. XANTUS is designed as a single-arm cohort study to minimize selection bias, and will enroll approximately 6,000 patients (mostly from Europe) with nonvalvular AF prescribed rivaroxaban, irrespective of their level of stroke risk. Overall duration of follow-up will be 1 year; the first patient was enrolled in June 2012. Similar studies (XANTUS-EL [Xarelto(®) for Prevention of Stroke in Patients with Nonvalvular Atrial Fibrillation, Eastern Europe, Middle East, Africa and Latin America] and XANAP [Xarelto(®) for Prevention of Stroke in Patients with Atrial Fibrillation in Asia-Pacific]) are ongoing in Latin America and Asia-Pacific. Data from these studies will supplement those from ROCKET AF and provide practical information concerning the use of rivaroxaban for stroke prevention in AF
- …